1 resultado para Athens (Greece).
em Repositório Científico da Universidade de Évora - Portugal
Filtro por publicador
- Repository Napier (2)
- Aberdeen University (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (9)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (145)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (21)
- CentAUR: Central Archive University of Reading - UK (57)
- Center for Jewish History Digital Collections (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (2)
- Digital Archives@Colby (1)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- Dokumentenserver der Akademie der Wissenschaften zu Göttingen (1)
- Duke University (3)
- Greenwich Academic Literature Archive - UK (3)
- Harvard University (4)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (2)
- Instituto Politécnico de Bragança (1)
- Memoria Académica - FaHCE, UNLP - Argentina (12)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Ohio University (9)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (9)
- Publishing Network for Geoscientific & Environmental Data (129)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (92)
- Queensland University of Technology - ePrints Archive (25)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (4)
- Research Open Access Repository of the University of East London. (1)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (10)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (3)
- University of Michigan (286)
- University of Queensland eSpace - Australia (3)
- WestminsterResearch - UK (2)
Resumo:
A specific modified constitutive equation for a third-grade fluid is proposed so that the model be suitable for applications where shear-thinning or shear-thickening may occur. For that, we use the Cosserat theory approach reducing the exact three-dimensional equations to a system depending only on time and on a single spatial variable. This one-dimensional system is obtained by integrating the linear momentum equation over the cross-section of the tube, taking a velocity field approximation provided by the Cosserat theory. From this reduced system, we obtain the unsteady equations for the wall shear stress and mean pressure gradient depending on the volume flow rate, Womersley number, viscoelastic coefficient and flow index over a finite section of the tube geometry with constant circular cross-section.