4 resultados para Area of sustainability

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transpiration of two year-old olive trees of three different varieties, Arbequina, Cobrançosa and Galega (18 trees per variety), irrigated with three levels of salt (0, 80 or 200 mM NaCl) for about 90 days, was measured by a gravimetric method. To determine leaf area, each tree was photographed from the side against a white background and the total area of each projected image was determined with ImageJ software. To calibrate these area determinations, one tree of each variety was subsequently stripped of all its leaves and its total leaf area was accurately measured. A correlation was then obtained between the area on the photograph of this particular tree and the total area of the detached leaves of the same tree. Using the leaf area determined by this procedure, transpiration rates of the trees could be calculated. Knowing leaf and air temperatures and RH, it was possible to determine the difference in molar fraction of water between the leaf and the air. Using this and the values of the transpiration rate, stomatal conductance could be calculated (gs calc) and compared with the conductance measured on the same trees with a porometer (gs). Actual leaf area of a plant was 1,40 (Arbequina), 1,42 (Cobrançosa) or 1,24 (Galega) times the area measured with ImageJ on the photograph of the same plant. Leaf area of the trees, on average of all salt irrigations, was significantly higher on Arbequina (0,187 m2) then on the other two varieties (0,138 m2 or 0,148 m2, for Cobrançosa or Galega, respectively), but did not differ significantly in percentage of controls (0 salt). On average of all three varieties, leaf area was also higher on plants irrigated without salt (0,181 m2) than on plants exposed to 80 or 200 mM NaCl (0,152 m2 or 0,140 m2, respectively), which did not differ between them. The same significant difference was observed when leaf area was expressed as percentage of controls. Transpiration rate was significantly higher on Cobrançosa (1,17 mmol m-2 s-1), on average of all treatments, but there were no significant differences between Arbequina (1,08 mmol m-2 s-1) and Galega (0,82 mmol m-2 s-1). In percentage of controls, there were no significant differences between varieties. Salt reduced significantly the transpiration rate in all varieties, both the actual and percentual values, to about 50% or 30% of controls when exposed to 80 mM or 200 mM NaCl, respectively. Stomatal conductance (gs), assessed by porometry, was significantly higher in control plants, mainly in Cobrançosa (102 mmol m-2 s-1), then in Arbequina (77 mmol m-2 s-1) and the lower values were found in Galega (51 mmol m-2 s-1). Salt reduced gs, on average of the three varieties to 30% or 10% of controls on exposure to 80 mM or 200 mM NaCl, respectively. Calculated (gs calc) and measured (gs) values of stomatal conductance showed a close relation between them (0,967, R2 = 0,837) which indicates this non-destructive method to determine whole-plant leaf area to be reasonably accurate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Caatinga, covering about 800.000 km2, is the predominant vegetation type of the semi-arid region of Brazil. The Caatinga biome comprises several phytophysiognomies and floristic compositions, with many endemic species, especially in Fabaceae, Cactaceae, Euphorbiaceae, Bignoniaceae e Combretaceae. Despite considerable advances, the Brazilian semi-arid needs more studies and inventories of biodiversity, especially the Ceará state. On the basis of these considerations, the present study aims to identify the flora and vegetation, in order to characterize the phytophysiognomy in an area of the Caatinga, in locality of Taperuaba, municipality of Sobral, Ceará, Brazil. Field work was conducted in March 2015 and 2016 respectively, in three transects. The life-forms were established in accordance of Raunkiaer´s system. The floristic list is composed of 87 species, distributed in 66 genera and 36 families. The flora comprises 22 Brazilian endemic species. The most representative family was Fabaceae with 15 species, followed by Malvaceae (7) Convolvulaceae (6), Euphorbiaceae (5) and Poaceae (5). The biological spectrum had a high proportion of therophytes (29,9%), chamaephytes (29,9%) and phanerophytes (26,4%). In the area were identified two phytophysiognomies: outcrops communities highlighting succulent phanerophytes (Pilosocereus chrysostele (Vaupel) Byles & G.D. Rowley subsp. cearensis P.J. Braun & Esteves and P. gounellei (F.A.C. Weber) Byles & Rowley), chamaephytes (Encholirium spectabile Mart. ex Schult. & Schult. f. and Lepidaploa chalybaea (Mart. ex DC.) H. Rob.) and therophytes (Mitracarpus baturitensis Sucre), mixed with communities including small trees and shrubs on deeper soil, composed of Cereus jamacaru DC., a succulent phanerophyte, and many woody phanerophytes, such as Cordia oncocalyx Allemão, Crateva trapia L., Mimosa caesalpiniifolia Benth., M. tenuiflora (Willd.) Poir., Poincianella bracteosa (Tul.) L.P. Queiroz and P. pyramidalis (Tul.) L.P. Queiroz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Greenhouse production is a very important activity in the West region of Portugal, with an area of approximately 800 ha where the regular production consists in two crops per year, one in winter-spring and the other in summer-autumn. Many growers are now prepared to better exploit market opportunities, since they know that the big export window opportunity is from June to September, when the production is difficult in other regions of south due to high temperatures. Grower’s use new and more productive varieties, either in soil or hydroponic systems, mostly in unheated greenhouses, naturally ventilated, and equipped with modern fertigation systems. Greenhouse production causes some environmental impacts due to the high use of inputs. Several improvements in technologies and crop practices may contribute to increase the use efficiency of resources, decreasing the negative environmental impacts. Greenhouse vegetable production in Northern EU countries is based on the supply of heating and differs significantly from the production system in the Southern EU countries. In the Northern countries, direct energy inputs, mostly for heating, are predominant while in the South the indirect energy input is also important, mainly associated with fertilizers, plastic cover materials and other auxiliary materials. The main objective of this work was to characterise the greenhouse production systems in the West region of Portugal, in order to evaluate the energetic consumptions (direct and indirect), the GHH emissions, the production costs and the farmer’s income. With this work the mostly important inputs were identified, allowing proposing alternative measures to improve efficiency and sustainability. All the data was obtained by surveys performed directly with growers, previously selected to be representative of the crop practices and greenhouse type of the region. However, more research should be performed in order to develop and to test technologies capable to improve resources use efficiency in greenhouse production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite significant advances in building technologies with the use of conventional construction materials (as concrete and steel), which significantly have driven the construction industry, earth construction have demonstrated its importance and relevance, as well as it has matched in an efficient and eco-friendly manner the social housing concerns. The diversity of earth construction techniques allowed this material to adapt to different climatic, cultural and social contexts until the present time. However, in Angola, the construction with earth is still associated with population fringes of weak economic resources, for which, given the impossibility of being able to acquire modern construction materials (steel, cement, brick, among others), they resort to the use of available natural materials. Furthermore, the lack of scientific and technical knowledge justifies the negative appreciation of traditional building techniques, and the derogatory way how are considered the earth constructions in Angolan territory. Given the country's current development status, and taking into account the environmental requirements and the real socio-economic sustainability of Angola, it is considered that one of the viable and adequate options, could be the recovering and upgrading of the ancestral techniques of earth construction. The purpose of this research is to develop the technical and scientific knowledge in order to improve and optimize these construction solutions, responding to the real problems of housing quality as well as to the current social, economic and environmental sustainability requirements. In this paper, a description of the physical and mechanical characteristics of the adobes typically used in the construction of traditional houses in some localities of Huambo, province in Angola, is carried out. The methodology was based on mechanical in-situ testing in adobe blocks manufactured with traditional procedures: i) tensile strength evaluated with the bending test and compressive strength test on earth blocks specimens; and, ii) durability and erodibility test by Geelong method adopting the New Zealand standard (NZS) procedures (4297: 1998; 4297: 1998 and 4297: 1999). The results allow the characterization of the materials used in the construction of raw earth in the Huambo region, contributing to the development of knowledge of these sustainable and traditional housing constructive solutions with a strong presence in Angola [1, 2]. This study is part of a larger project in the area of Earth Construction [3], which aims to produce knowledge which can stimulate the use of environmental friendly construction materials and contribute to develop constructive solutions with improved performance, durability, comfort, safety and sustainability.