2 resultados para Applications of Ceria Based Materials

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for cleaner processes is one of the major challenges in modern chemical industries. In this context clay derived materials are environmentally friendly catalysts that can be easily tailored to optimize their catalytic activity for a precise reaction of interest. Furthermore, clay-based catalysts can be easily separated, recovered and reused and their versatility, low cost, high catalytic activity and/or selectivity render them very attractive materials. Considering that the stability towards water vapour is a crucial aspect for catalytic performance and reuse of the catalysts, we present a study of the pore structure stability, in the presence of water vapour, of clay catalysts prepared by acid activation with HCl solutions and ion-exchange with sodium, aluminium and iron, from a natural clay collected at Serra de Dentro (Porto Santo Island, Portugal) [1]. For elucidating the influence of water vapour on the pore structure stability, water vapour adsorption- -desorption isotherm, at 298 K, was determined on each sample by gravimetric method as well as n-pentane adsorption−desorption isotherms, at 298 K, which were determined before and after the corresponding water adsorption-desorption isotherms. Prior to the measurements, the samples were outgassed during 5 h at 473 K and the adsorptives were outgassed by repeated freeze–thaw cycles. The results to be reported in the communication allow us to state that, upon contact with water vapour, the less acid activated catalysts suffered some reduction in pore volume reflecting changes in the pore structure, while the more acid activated catalysts and those prepared by ion-exchange presented excellent stability upon one cycle of water vapour adsorption-desorption. The results are corroborated by nitrogen adsorption-desorption isotherms determined, at 77 K, before and after the water and n-pentane adsorption-desorption measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sustainability of buildings associated to the use of raw earth has motivated the studies and the development of techniques and methods in the context of this type of construction. In the region of Huambo, Angola, these construction techniques are widely used, especially for low-income families who represent the majority of the population. Much of the buildings in Huambo province are built with adobe. Due to the climate in this region, subtropical, hot and humid, with altitudes above 1000 meters and extensive river system, these buildings are particularly vulnerable to the action of water and develop, in many situations, early degradation. The Huambo Province is located in central Angola, has 36 km2 area and approximately 2 million inhabitants. This work aims to evaluate, by conducting in-situ tests, physical and mechanical properties of adobe blocks typically used in the construction of those buildings. The methodology is based on field campaigns where in-situ expeditious tests were performed in soils (smell test, color, touch, brightness, sedimentation, ball, hardness, etc.) and tests on adobes blocks made with traditional procedures, particularly in terms of durability and erodibility (erosion test at Geelong method; evaluation test of wet / dry cycle, applying the New Zealand standards 4297: 1998; 4297: 1998 and 4297: 1999). The results will contribute to the characterization of the geomaterials and methods used in construction with earth in Huambo Province, contributing to the improvement of these sustainable solutions, with a strong presence in this region. The results of this study will also contribute to the proposal of constructive solutions with improved performance characteristics, comfort, safety and durability.