4 resultados para Air electric potential gradient

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to access the effect of the lakes in the atmospheric electrical field, measurements have been carried out near a large man-made lake in southern Portugal, the Alqueva reservoir, during the ALqueva hydro-meteorological EXperiment 2014. The purpose of these conjoint experiments was to study the impact of the Alqueva reservoir on the atmosphere, in particular on the local atmospheric electric environment by comparing measurements taken in the proximity of the lake. Two stations 10 km apart were used, as they were located up- and down-wind of the lake (Amieira and Parque Solar, respectively), in reference to the dominant northwestern wind direction. The up-wind station shows lower atmospheric electric potential gradient (PG) values than the ones observed in the down-wind station between 12 and 20 UTC. The difference in the atmospheric electric PG between the up-wind and the down-wind station is ~30 V/m during the day. This differential occurs mainly during the development of a lake breeze, between 10 and 18 UTC, as a consequence of the surface temperature gradient between the surrounding land and the lake water. In the analysis presented, a correlation is found between the atmospheric electric PG differences and both wind speed and temperature gradients over the lake, thus supporting the influence of the lake breeze over the observed PG variation in the two stations. Two hypotheses are provided to explain this observation: (1) The air that flows from the lake into the land station is likely to increase the local electric conductivity through the removal of ground dust and the transport of cleaner air from higher altitudes with significant light ion concentrations. With such an increase in conductivity, it is expected to see a reduction of the atmospheric electric PG; (2) the resulting air flow over the land station carries negative ions formed by wave splashing in the lake's water surface, as a result of the so-called balloelectric effect. These negative ions will form a space-charge density (SCD) that can reduce the atmospheric electric PG. A formulation is derived here in order to estimate the local SCD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Teknova have 2D steady-state models of the calciner but wish, in the long term, to have a 3D model that can also cover unsteady conditions, and can can model the loss of axisymmetry that someties occurs. Teknova also wish to understand the processes happening around the tip of the upper electrode, in particular the formation of a lip on it and the the shape of the empty region below it. The Study Group proposed potential models for the degree of graphitization, and for the granular flow. Also the Study Group considered the upper electrode in detail. The proposed model for the lip formation is by sublimation of carbon from the hottest parts of the furnace with redeposition in the region around the electrode, which may stick particles onto the electrode surface. In this model the region below the electrode would be a void, roughly a vertex-down conical cavity. The electric field near the lower rim of the electrode will then have a singularity and so the most intense heating of the charge will be around the rim. We conjecture that the reason why the lower electrode lasts so much longer than the upper is that it is not adjacent to a cavity like this, and therefore does not have a singularity in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of renewable energies as a response to the EU targets defined for 2030 Climate Change and Energy has been increasing. Also non-dispatchable and intermittent renewable energies like wind and solar cannot generally match supply and demand, which can also cause some problems in the grid. So, the increased interest in energy storage has evolved and there is nowadays an urgent need for larger energy storage capacity. Compressed Air Energy Storage (CAES) is a proven technology for storing large quantities of electrical energy in the form of high-pressure air for later use when electricity is needed. It exists since the 1970’s and is one of the few energy storage technologies suitable for long duration (tens of hours) and utility scale (hundreds to thousands of MW) applications. It is also one of the most cost-effective solutions for large to small scale storage applications. Compressed Air Energy Storage can be integrated and bring advantages to different levels of the electric system, from the Generation level, to the Transmission and Distribution levels, so in this paper a revisit of CAES is done in order to better understand what and how it can be used for our modern needs of energy storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of lake–atmosphere interactions was the main purpose of a 2014 summer experiment at Alqueva reservoir in Portugal. Near-surface fluxes of momentum, heat and mass [water vapour (H2O) and carbon dioxide (CO2)] were obtained with the new Campbell Scientific’s IRGASON Integrated Open-Path CO2/H2O Gas Analyser and 3D Sonic Anemometer between 2 June and 2 October. On average, the reservoir was releasing energy in the form of sensible and latent heat flux during the study period. At the end of the 75 d, the total evaporation was estimated as 490.26 mm. A high correlation was found between the latent heat flux and the wind speed (R = 0.97). The temperature gradient between air and water was positive between 12 and 21 UTC, causing a negative sensible heat flux, and negative during the rest of the day, triggering a positive sensible heat flux. The reservoir acted as a sink of atmospheric CO2 with an average rate of −0.026 mg m−2 s−1. However, at a daily scale we found an unexpected uptake between 0 and 9 UTC and almost null flux between 13 and 19 UTC. Potential reasons for this result are further discussed. The net radiation was recorded for the same period and water column heat storage was estimated using water temperature profiles. The energy balance closure for the analysed period was 81%. In-water solar spectral downwelling irradiance profiles were measured with a new device allowing measurements independent of the solar zenith angle, which enabled the computation of the attenuation coefficient of light in the water column. The average attenuation coefficient for the photosynthetically active radiation spectral region varied from 0.849 ± 0.025 m−1 on 30 July to 1.459 ± 0.007 m−1 on 25 September.