2 resultados para Acute risk

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute Coronary Syndrome (ACS) is transversal to a broad and heterogeneous set of human beings, and assumed as a serious diagnosis and risk stratification problem. Although one may be faced with or had at his disposition different tools as biomarkers for the diagnosis and prognosis of ACS, they have to be previously evaluated and validated in different scenarios and patient cohorts. Besides ensuring that a diagnosis is correct, attention should also be directed to ensure that therapies are either correctly or safely applied. Indeed, this work will focus on the development of a diagnosis decision support system in terms of its knowledge representation and reasoning mechanisms, given here in terms of a formal framework based on Logic Programming, complemented with a problem solving methodology to computing anchored on Artificial Neural Networks. On the one hand it caters for the evaluation of ACS predisposing risk and the respective Degree-of-Confidence that one has on such a happening. On the other hand it may be seen as a major development on the Multi-Value Logics to understand things and ones behavior. Undeniably, the proposed model allows for an improvement of the diagnosis process, classifying properly the patients that presented the pathology (sensitivity ranging from 89.7% to 90.9%) as well as classifying the absence of ACS (specificity ranging from 88.4% to 90.2%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the one hand, pesticides may be absorbed into the body orally, dermally, ocularly and by inhalation and the human exposure may be dietary, recreational and/or occupational where toxicity could be acute or chronic. On the other hand, the environmental fate and toxicity of the pesticide is contingent on the physico-chemical characteristics of pesticide, the soil composition and adsorption. Human toxicity is also dependent on the exposure time and individual’s susceptibility. Therefore, this work will focus on the development of an Artificial Intelligence based diagnosis support system to assess the pesticide toxicological risk to humanoid, built under a formal framework based on Logic Programming to knowledge representation and reasoning, complemented with an approach to computing grounded on Artificial Neural Networks. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting.