3 resultados para ALKENE POLYMERIZATION
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Nucleobase-functionalized polymers are widely used in the fields of supramolecular chemistry and self-assembly, and their development for biomedical applications is also an area of interest. They are usually synthesized by tedious multistep procedures. In this study, we assess adenine as an organoinitiator/ organocatalyst for the ring-opening polymerization of lactide. L-Lactide can be quantitatively polymerized in the presence of adenine. Reaction conditions involving short reaction times and relatively low temperatures enable the access to adenine end-capped polylactide in a simple one-step procedure, in bulk, without additional catalyst. DFT calculations show that the polymerization occurs via hydrogen bond catalysis. The mechanism involves (i) a hydrogen bond between the NH9 of adenine and the carbonyl moiety of lactide, leading to an electron deficient carbon atom, and (ii) a second hydrogen bond between the N3 of adenine and the NH2 of a second adenine molecule, followed by a nucleophilic attack of the latter activated amine on the former electron deficient carbon on the monomer. For longer reaction times and higher temperatures, macrocyclic species are formed, and a mechanism involving the imidazole ring of adenine is proposed based on literature studies. Depending on the reaction conditions, adenine can thus be considered as an organoinitiator or an organocatalyst for the ring-opening polymerization of lactide.
Resumo:
Nucleobase-functionalized polymers are widely used in the fields of supramolecular chemistry and self-assembly, and their development for biomedical applications is also an area of interest. They are usually synthesized by tedious multistep procedures. In this study, we assess adenine as an organoinitiator/organocatalyst for the ring-opening polymerization of lactide. L-Lactide can be quantitatively polymerized in the presence of adenine. Reaction conditions involving short reaction times and relatively low temperatures enable the access to adenine end-capped polylactide in a simple one-step procedure, in bulk, without additional catalyst. DFT calculations show that the polymerization occurs via hydrogen bond catalysis. The mechanism involves (i) a hydrogen bond between the NH9 of adenine and the carbonyl moiety of lactide, leading to an electron deficient carbon atom, and (ii) a second hydrogen bond between the N3 of adenine and the NH2 of a second adenine molecule, followed by a nucleophilic attack of the latter activated amine on the former electron deficient carbon on the monomer. For longer reaction times and higher temperatures, macrocyclic species are formed, and a mechanism involving the imidazole ring of adenine is proposed based on literature studies. Depending on the reaction conditions, adenine can thus be considered as an organoinitiator or an organocatalyst for the ring-opening polymerization of lactide.
Resumo:
The use of organic molecules as catalysts for the ring-opening polymerization (ROP) of cyclic esters has gained much interest last years.[1] The use of a molecule of biological interest, able to initiate ROP of cyclic esters without any cocatalyst is even more interesting, as the resulting material will not contain any catalytic residue. Nucleobase-polymer conjugates development is thus an emerging area envisaging biomedical applications.[2] However, they are usually synthesized by tedious multistep procedures. Recently, adenine was used as organoinitiator for the ROP of L-lactide.[3] Reaction conditions involving short reaction times and relatively low temperatures enable the access to adenine-polylactide(Adn-PLA)conjugates in a simple one-step procedure, without additional catalyst and in the absence of solvent. In this study, computational investigations with density functional theory (DFT) were performed in order to clarify the reaction mechanism leading to the desired Adn-PLA. The results show that a hydrogen bond catalytic mechanism, involving a nucleophilic attack of the activated amine group of adenine onto the carbonyl group of lactide, seem to be plausible.