2 resultados para 819
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
When blood flows through small vessels, the two-phase nature of blood as a suspension of red cells (erythrocytes) in plasma cannot be neglected, and with decreasing vessel size, a homogeneous continuum model become less adequate in describing blood flow. Following the Haynes’ marginal zone theory, and viewing the flow as the result of concentric laminae of fluid moving axially, the present work provides models for fluid flow in dichotomous branching composed by larger and smaller vessels, respectively. Expressions for the branching sizes of parent and daughter vessels, that provides easier flow access, are obtained by means of a constrained optimization approach using the Lagrange multipliers. This study shows that when blood behaves as a Newtonian fluid, Hess – Murray law that states that the daughters-to-parent diameter ratio must equal to 2^(-1/3) is valid. However, when the nature of blood as a suspension becomes important, the expression for optimum branching diameters of vessels is dependent on the separation phase lengths. It is also shown that the same effect occurs for the relative lengths of daughters and parent vessels. For smaller vessels (e. g., arterioles and capillaries), it is found that the daughters-to-parent diameter ratio may varies from 0,741 to 0,849, and the daughters-to-parent length ratio varies from 0,260 to 2,42. For larger vessels (e. g., arteries), the daughters-to-parent diameter ratio and the daughters-to-parent length ratio range from 0,458 to 0,819, and from 0,100 to 6,27, respectively. In this paper, it is also demonstrated that the entropy generated when blood behaves as a single phase fluid (i. e., continuum viscous fluid) is greater than the entropy generated when the nature of blood as a suspension becomes important. Another important finding is that the manifestation of the particulate nature of blood in small vessels reduces entropy generation due to fluid friction, thereby maintaining the flow through dichotomous branching vessels at a relatively lower cost.
Resumo:
Assessing the ways in which rural agrarian areas provide Cultural Ecosystem Services (CES) is proving difficult to achieve. This research has developed an innovative methodological approach named as Multi Scale Indicator Framework (MSIF) for capturing the CES embedded into the rural agrarian areas. This framework reconciles a literature review with a transdisciplinary participatory workshop. Both of these sources reveal that societal preferences diverge upon judgemental criteria which in turn relate to different visual concepts that can be drawn from analyzing attributes, elements, features and characteristics of rural areas. We contend that it is now possible to list a group of possible multi scale indicators for stewardship, diversity and aesthetics. These results might also be of use for improving any existing European indicators frameworks by also including CES. This research carries major implications for policy at different levels of governance, as it makes possible to target and monitor policy instruments to the physical rural settings so that cultural dimensions are adequately considered. There is still work to be developed on regional specific values and thresholds for each criteria and its indicator set. In practical terms, by developing the conceptual design within a common framework as described in this paper, a considerable step forward toward the inclusion of the cultural dimension in European wide assessments can be made