1 resultado para 67-498

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe one of the approaches of the participation of Universidade de Évora. Our approach is similar to usual methods where text is preprocessed, features are extracted, and then used in SVMs with cross validation. The main difference is that features used come from averages of word embeddings, specifically word2vec vectors. Using PAN 2016 dataset, we were able to achieve 44.8% and 68.2% for English age and gender classification respectively. We were also able to achieve 51.3% and 67.1% accuracy for Spanish age and gender classification. Finally, we report 71.9% accuracy for Dutch age classification.