3 resultados para 3D and 2D background modelling
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Solar radiation takes in today's world, an increasing importance. Different devices are used to carry out spectral and integrated measurements of solar radiation. Thus the sensors can be divided into the fallow types: Calorimetric, Thermomechanical, Thermoelectric and Photoelectric. The first three categories are based on components converting the radiation to temperature (or heat) and then into electrical quantity. On the other hand, the photoelectric sensors are based on semiconductor or optoelectronic elements that when irradiated change their impedance or generate a measurable electric signal. The response function of the sensor element depends not only on the intensity of the radiation but also on its wavelengths. The radiation sensors most widely used fit in the first categories, but thanks to the reduction in manufacturing costs and to the increased integration of electronic systems, the use of the photoelectric-type sensors became more interesting. In this work we present a study of the behavior of different optoelectronic sensor elements. It is intended to verify the static response of the elements to the incident radiation. We study the optoelectronic elements using mathematical models that best fit their response as a function of wavelength. As an input to the model, the solar radiation values are generated with a radiative transfer model. We present a modeling of the spectral response sensors of other types in order to compare the behavior of optoelectronic elements with other sensors currently in use.
Resumo:
Transferring distribution models between different geographical areas may be problematic, as the performance of models outside their original scope is hard to predict. A modelling procedure is needed that gets the gist of the environmental descriptors of a distribution area, without either overfitting to the training data or overestimating the species’ distribution potential.We tested the transferability power of the favourability function, a generalized linear model, on the distribution of the Iberian desman (Galemys pyrenaicus) in the Iberian territories of Portugal and Spain.We also tested the effects of two of the main potential constraints on model transferability: the analysed ranges of the predictor variables, and the completeness of the species distribution data. We modelled 10 km×10km presence/absence data from Portugal and Spain separately, extrapolated each model to the other country, and compared predictions with observations. The Spanish model, despite arguably containing more false absences, showed good predictive ability in Portugal. The Portuguese model, whose predictors ranged between only a subset of the values observed in Spain, overestimated desman distribution when transferred.We discuss possible reasons for this differential model behaviour, and highlight the importance of this kind of models for prediction and conservation applications
Resumo:
Non-perennial rivers and streams (NPRS) cover >50% of the global river network. They are particularly predominant in Mediterranean Europe as a result of dry climate conditions, climate change and land use development. Historically, both scientists and policy makers underestimated the importance of NRPS for nature and humans alike, mainly because they have been considered as systems of low ecological and economic value. During the past decades, diminishing water resources have increased the spatial and temporal extent of artificial NPRS as well as their exposure to multiple stressors, which threatening their ecological integrity, biodiversity and ecosystem services. In this paper, we provide a comprehensive overview of the structural and functional characteristics of NPRS in the European Mediterranean, and discuss gaps and problems in their management, concerning their typology, ecological assessment, legislative and policy protection, and incorporation in River Basin Management Plans. Because NPRS comprise highly unstable ecosystems, with strong and often unpredictable temporal and spatial variability - at least as far as it is possible to assess - we outline the future research needs required to better understand, manage and conserve them as highly valuable and sensitive ecosystems. Efficient collaborative activities among multidisciplinary research groups aiming to create innovative knowledge, water managers and policy makers are urgently needed in order to establish an appropriate methodological and legislative background. The incorporation of NPRS in EU-Med River Basin Management Plans in combination with the application of ecological flows is a first step towards enhancing NPRS management and conservation in order to effectively safeguard these highly valuable albeit threatened ecosystems