7 resultados para 280213 Other Artificial Intelligence

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dyscalculia stands for a brain-based condition that makes it hard to make sense of numbers and mathematical concepts. Some adolescents with dyscalculia cannot grasp basic number concepts. They work hard to learn and memorize basic number facts. They may know what to do in mathematical classes but do not understand why they are doing it. In other words, they miss the logic behind it. However, it may be worked out in order to decrease its degree of severity. For example, disMAT, an app developed for android may help children to apply mathematical concepts, without much effort, that is turning in itself, a promising tool to dyscalculia treatment. Thus, this work focuses on the development of an Intelligent System to estimate children evidences of dyscalculia, based on data obtained on-the-fly with disMAT. The computational framework is built on top of a Logic Programming framework to Knowledge Representation and Reasoning, complemented with a Case-Based problem solving approach to computing, that allows for the handling of incomplete, unknown, or even contradictory information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A link between patterns of pelvic growth and human life history is supported by the finding that, cross-culturally, variation in maturation rates of female pelvis are correlated with variation in ages of menarche and first reproduction, i.e., it is well known that the human dimensions of the pelvic bones depend on the gender and vary with the age. Indeed, one feature in which humans appear to be unique is the prolonged growth of the pelvis after the age of sexual maturity. Both the total superoinferior length and mediolateral breadth of the pelvis continues to grow markedly after puberty, and do not reach adult proportions until the late teens years. This continuation of growth is accomplished by relatively late fusion of the separate centers of ossification that form the bones of the pelvis. Hence, in this work we will focus on the development of an intelligent decision support system to predict individual’s age based on a pelvis' dimensions criteria. Some basic image processing techniques were applied in order to extract the relevant features from pelvic X-rays, being the computational framework built on top of a Logic Programming approach to Knowledge Representation and Reasoning that caters for the handling of incomplete, unknown, or even self-contradictory information, complemented with a Case Base approach to computing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dyscalculia is usually perceived of as a specific learning difficulty for mathematics or, more appropriately, arithmetic. Because definitions and diagnoses of dyscalculia are in their infancy and sometimes are contradictory. However, mathematical learning difficulties are certainly not in their infancy and are very prevalent and often devastating in their impact. Co-occurrence of learning disorders appears to be the rule rather than the exception. Co-occurrence is generally assumed to be a consequence of risk factors that are shared between disorders, for example, working memory. However, it should not be assumed that all dyslexics have problems with mathematics, although the percentage may be very high, or that all dyscalculics have problems with reading and writing. Because mathematics is very developmental, any insecurity or uncertainty in early topics will impact on later topics, hence to need to take intervention back to basics. However, it may be worked out in order to decrease its degree of severity. For example, disMAT, an app developed for android may help children to apply mathematical concepts, without much effort, that is turning in itself, a promising tool to dyscalculia treatment. Thus, this work will focus on the development of a Decision Support System to estimate children evidences of dyscalculia, based on data obtained on-the-fly with disMAT. The computational framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, grounded on a Case-based approach to computing, that allows for the handling of incomplete, unknown, or even self-contradictory information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho realizou-se na Refinaria de Sines e teve como principal objectivo a utilização de ferramentas oriundas da Área Científica da Inteligência Artificial no desenvolvimento de modelos de previsão da classificação da Água Residual Industrial de acordo com a Legislação em vigor, com vista à minimização dos impactes ambientais e das tarifas aplicadas pela Concessionária (Águas de Santo André) à Refinaria. Actualmente a avaliação da qualidade do efluente é realizada através de métodos analíticos após colheita de uma amostra do efluente final. Esta abordagem é muito restritiva já que não permite actuar sobre o efluente em questão pois apenas pode evitar que, no futuro, uma mistura semelhante volte a ser refinada. Devido a estas limitações, o desenvolvimento de modelos de previsão baseados em Data Mining mostrou ser uma alternativa para uma questão pró-activa da qualidade dos efluentes que pode contribuir decisivamente para o cumprimento das metas definidas pela Empresa. No decurso do trabalho, foram desenvolvidos dois modelos de previsão da qualidade do efluente industrial com desempenhos muito semelhantes. Um deles utiliza a composição das misturas processadas e o outro, utiliza informações relativas ao crude predominante na mistura. ABSTRACT; This study has taken place at the Sines Refinery and its main objective is the use of Artificial Intelligence tools for the development of predictive models to classify industrial residual waters according with the Portuguese Law, based on the characteristics of the mixtures of crude oil that arrive into the Refinery to be processed, to minimize the Environmental impacts and the application of taxes. Currently, the evaluation of the quality of effluent is performed by analytical methods after harvesting a sample of the final effluent. This approach is very restrictive since it does not act on the intended effluent; it can only avoid that in the future a similar mixture is refined. Duet these limitations, the development of forecasting models based on Data Mining has proved to be an alternative on the important issue which is the quality of effluent, which may contribute to the achievement of targets set by the Company. During this study, two models were developed to predict the quality of industrial effluents with very similar performances. One uses the composition of processed mixtures and the other uses information regarding the predominant oil in the mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that rib cage dimensions depend on the gender and vary with the age of the individual. Under this setting it is therefore possible to assume that a computational approach to the problem may be thought out and, consequently, this work will focus on the development of an Artificial Intelligence grounded decision support system to predict individual’s age, based on such measurements. On the one hand, using some basic image processing techniques it were extracted such descriptions from chest X-rays (i.e., its maximum width and height). On the other hand, the computational framework was built on top of a Logic Programming Case Base approach to knowledge representation and reasoning, which caters for the handling of incomplete, unknown, or even contradictory information. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process. The accuracy of the proposed model is satisfactory, close to 90%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the one hand, pesticides may be absorbed into the body orally, dermally, ocularly and by inhalation and the human exposure may be dietary, recreational and/or occupational where toxicity could be acute or chronic. On the other hand, the environmental fate and toxicity of the pesticide is contingent on the physico-chemical characteristics of pesticide, the soil composition and adsorption. Human toxicity is also dependent on the exposure time and individual’s susceptibility. Therefore, this work will focus on the development of an Artificial Intelligence based diagnosis support system to assess the pesticide toxicological risk to humanoid, built under a formal framework based on Logic Programming to knowledge representation and reasoning, complemented with an approach to computing grounded on Artificial Neural Networks. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conceptual interpretation of languages has gathered peak interest in the world of artificial intelligence. The challenge in modeling various complications involved in a language is the main motivation behind our work. Our main focus in this work is to develop conceptual graphical representation for image captions. We have used discourse representation structure to gain semantic information which is further modeled into a graphical structure. The effectiveness of the model is evaluated by a caption based image retrieval system. The image retrieval is performed by computing subgraph based similarity measures. Best retrievals were given an average rating of . ± . out of 4 by a group of 25 human judges. The experiments were performed on a subset of the SBU Captioned Photo Dataset. This purpose of this work is to establish the cognitive sensibility of the approach to caption representations