1 resultado para 280205 Text Processing
em Repositório Científico da Universidade de Évora - Portugal
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (4)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (7)
- Aston University Research Archive (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Bucknell University Digital Commons - Pensilvania - USA (15)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- Cambridge University Engineering Department Publications Database (6)
- CentAUR: Central Archive University of Reading - UK (49)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (3)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- Dalarna University College Electronic Archive (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (11)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (32)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (16)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (18)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (105)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (17)
- Institutional Repository of Leibniz University Hannover (2)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- National Center for Biotechnology Information - NCBI (78)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- Queensland University of Technology - ePrints Archive (262)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (2)
- Research Open Access Repository of the University of East London. (4)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (22)
- Scielo España (1)
- South Carolina State Documents Depository (2)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (9)
- Universidad Politécnica de Madrid (4)
- Universidade de Lisboa - Repositório Aberto (2)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- University of Connecticut - USA (2)
- University of Michigan (185)
- University of Queensland eSpace - Australia (11)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
This paper presents a study made in a field poorly explored in the Portuguese language – modality and its automatic tagging. Our main goal was to find a set of attributes for the creation of automatic tag- gers with improved performance over the bag-of-words (bow) approach. The performance was measured using precision, recall and F1. Because it is a relatively unexplored field, the study covers the creation of the corpus (composed by eleven verbs), the use of a parser to extract syntac- tic and semantic information from the sentences and a machine learning approach to identify modality values. Based on three different sets of attributes – from trigger itself and the trigger’s path (from the parse tree) and context – the system creates a tagger for each verb achiev- ing (in almost every verb) an improvement in F1 when compared to the traditional bow approach.