5 resultados para 18S-25S RDNA
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Bursaphelenchus antoniae sp. n. is described and illustrated. Dauer juveniles were isolated from the body of the large pine weevil, Hylobius sp., collected from maritime pine (Pinus pinaster) stumps, in Portugal. Bursaphelenchus antoniae sp. n. was reared and maintained in P. pinaster wood segments and on Petri dish cultures of the fungi Botrytis cinerea and Monilinia fructicola. The new species is characterised by a relatively small body length of ca 583 μm (females) and 578 μm (males), a lateral field with two incisures, presence of a small vulval flap and a conoid female tail with a rounded or pointed terminus. Males have stout spicules with a disc-like cucullus and seven caudal papillae arranged as a single midventral precloacal papilla, one precloacal pair and two postcloacal pairs. In the character of the lateral field, B. antoniae sp. n. comes close to B. abietinus, B. rainulfi and B. hylobianum, whilst spicule characters place it within the piniperdae-group sensu Ryss et al. Morphologically, B. antoniae sp. n. is closest to B. hylobianum; the spicules of these two species having flattened, wing-like, alae on the distal third of the lamina. Bursaphelenchus antoniae sp. n. is distinguished from B. hylobianum on the arrangement of the caudal papillae (two vs three pairs). ITS-RFLP profiles and the failure to hybridise support the separation of the two species. Phylogenetic analysis of the new species, based on the 18S rDNA sequence, supports the inclusion of this new species in the B. hylobianum-group sensu Braasch. Sequence analysis of the 28S rDNA D2/D3 domain did not place the new species in a definite group.
Resumo:
Abstract - The genus Bursaphelenchus comprises almost 100 species mainly from the northern hemisphere, with conifers as the most important hosts. Among the various nematode species, the pine wood nematode (PWN), Bursaphelenchus xylophilus, is the casual agent of pine wilt disease (PWD), and the most important forest pest for pines worldwide, classified as an A1 quarantine organism within the European Union. In 1999 this nematode was detected for the first time in Portugal and Europa associated with maritime pine, Pinus pinaster. Following detection, a national program denominated "Programa Nacional de Luta contra o Nemátodo da Madeira do Pinheiro" (PROLUNP) was created to, among other objectives, determine the distribution of the PWN and its associated vector(s) and host(s), and therefore intensive surveys covering the entire country were conducted with thousands of wood samples and suspected insects being analyzed. This thesis presents the listing, distribution, frequency and the insects associated with Bursaphelenchus species found associated with maritime pine in Portugal, identifying and characterizing the various species by morphological, biometrical and molecular biology (ITS-RFLP and rDNA sequencing analysis) techniques. To achieve the objectives, a total of 4813 maritime pine wood samples and 3294 insects from 22 species and six families were individually analyzed. A total of nine Bursaphelenchus species were found, namely: B. antoniae, B. hellenicus, B. leoni, B. mucronatus, B. pinasteri, B. sexdentati, B. teratospicularis, B. tusciae and B. xylophilus, all of them (with the exception of B. xylophilus) being new records for Portugal. Some of the species appear to have a widespread distribution, such as B. leoni, B. teratospicularis and B. tusciae while others were very rarely found and apparently have a localized distribution range within the country, namely B. antoniae and B. mucronatus. The majority of the species is characteristic of the Mediterranean region and can also be found in countries such as Spain, Italy and Greece, reflecting the affinity of our fauna with those locations. The association of B. hellenicus and B. tusciae with maritime pine is here reported for the first time. Six of the Bursaphelenchus species were also found associated with insects, mainly from the family Scolytidae (Coleoptera). Some of these interactions were described for the first time, namely: B. hellenicus with both Ips sexdentatus and Hylurgus ligniperda, B. sexdentati with both H. ligniperda and Orthotomicus erosus and B. tusciae with H. ligniperda. The exclusive association of B. xylophilus with the cerambycid Monochamus galloprovincialis was also confirmed. The nematode's dauer juveniles were usually found in low numbers in the insect vectors (ca 10-100 per insect), although for B. xylophilus a few thousand specimens per insect were sometimes found. The location of the dauer juveniles differed according to the species, although they were more common under the elytra and wings of the adult insects. A species new to science was detected and formally described as B. antoniae, associated with Hylobius sp. (Coleoptera; Curculionidae) beetles. Morphologically, this new species is very similar to B. hylobianum, although it's distinct ITS-RFLP molecular pattern (with only the enzyme Haelll producing comparable restriction bands) and the failure of hybridization supported the two species as distinct entities. Additional phylogenetic analysis of the 18S rDNA sequence further supported the taxonomical proximity of B. antoniae with B. hylobianum. Concerning the PWN, detailed studies on the development and morphology of B. xylophilus were conducted, and comparative measurements of field-collected and laboratory-maintained populations demonstrated that nematodes from the second group displayed larger size in all morphometric parameters, which could derive from more adequate conditions of nourishment and/or temperature. Taxonomical studies on the development stages of B. xylophilus confirmed the existence of four propagative juvenile stages (J1,J2,J3 and J4), an adult stage with both sexes and two dispersal stages (jIII e jIV), with the measurements of the gonad length allowing the separation of the propagative stages. It is hoped that the acquired knowledge will be useful on future surveys of nematodes of the Bursaphelenchus genus collected from either wood material or insect vectors, and facilitate the correct distinction and identification of the various species which are now known to occur. ### Resumo - 0 género Bursaphelenchus compreende quase 100 espécies, distribuídas sobretudo nos países do hemisfério norte do globo terrestre. Embora algumas espécies já tenham sido detectadas em plantas herbáceas, os hospedeiros vegetais mais comuns deste género são as coníferas, particularmente pinheiros. 0 nemátode da madeira do pinheiro (NMP), Bursaphelenchus xylophilus, é considerado a espécie mais importante deste género uma vez que é o agente causal da doença da murchidão dos pinheiros ("pine wilt disease"). Originário dos Estados Unidos, onde não causa grande impacte, o NMP foi introduzido em alguns países da Ásia (China, Japão, Coreia e Taiwan) e mais recentemente na Europa (Portugal). Nestas regiões é responsável pela destruição de milhares de hectares de coníferas, assumindo uma elevada importância económica. Em Portugal, depois da sua detecção em 1999, associado a Pinus pinaster, foi implementado um programa nacional "Programa Nacional de Luta contra o Nemátodo da Madeira do Pinheiro" (PROLUNP) que permitiu determinar a área afectada pela praga (a sul do rio Tejo, península de Setúbal) bem como definir e implementar estratégias de controlo e prevenção da disseminação do NMP a outras zonas de Portugal. Recentemente, em Junho de 2008, foi confirmada a presença de B. xylophilus em outras regiões de Portugal levando as autoridades oficiais a definir todo o território continental como zona afectada e de restrição. As prospecções intensivas realizadas nos últimos anos incluíram a recolha e análise de milhares de amostras de madeira de pinheiro bem como de insectos associados ao pinheiro bravo conduzindo à identificação de várias espécies de Bursaphelenchus. Assim, os estudos conduzidos neste trabalho tiveram como objectivos efectuar uma caracterização morfológica, biométrica e molecular das espécies associadas a P. pinaster em Portugal bem como a sua distribuição geográfica e abundância. Os estudos biométricos foram realizados com populações extraídas directamente do meio natural. Foi ainda realizada uma pesquisa que permitiu identificar os insectos a que estão associadas essas espécies, os seus possíveis vectores. Foram analisadas no total 4813 amostras de P. pinaster e 3294 insectos (22 espécies pertencentes a seis famílias diferentes). Foram identificadas um total de nove espécies: B. antoniae n. sp., B. hellenicus, B. leoni, B. mucronatus, B. pinasteri, B. sexdentati, B. teratospicularis, B. tusciae e B. xylophilus. Foram realizados estudos morfológicos e biométricos de todas as espécies com excepção de B. mucronatus; o reduzido número de exemplares encontrados em apenas uma amostra foram utilizados para efectuar o diagnóstico molecular desta espécie (ITS-RFLP). Apesar de ter havido, sempre que possível, a confirmação molecular, na maioria dos casos a caracterização morfológica e biométrica permitiu a correcta identificação das espécies. Contudo, foi imprescindível a análise molecular em algumas amostras, nomeadamente para a identificação de B. xylophilus e B. sexdentati; dada a grande semelhança entre B. xylophilus e B. mucronatus e tendo sido encontradas algumas populações de B. xylophilus que possuíam fêmeas com cauda mucronada, foi necessária a realização da confirmação molecular. Com excepção de B. xylophilus, todas as outras espécies foram reportadas pela primeira vez em Portugal. Juntamente com B. xylophilus, B. pinasteri foi a espécie encontrada nas amostras de madeira de pinheiro com maior frequência. Algumas destas espécies como B. leoni, B. teratospicularis e B. tusciae foram reportadas em diferentes localidades do norte, centro e sul de Portugal, apresentando uma vasta distribuição geográfica; este resultado está em consonância com a forte associação destas espécies a climas mediterrânicos tal como acontece em Espanha, França, Itália e Grécia. Em oposição, espécies como B. antoniae e B. mucronatus foram encontradas apenas numa ocasião na região centro (Leiria) e norte (Figueira da Foz) do país, respectivamente. Bursaphelenchus mucronatus é igualmente pouco frequente em Espanha onde ocorre sobretudo na região norte, na Galiza. Esta espécie preferirá climas mais frios, ocorrendo com uma maior frequência nas regiões de latitude norte; esta análise é corroborada pela presença constante em países como Alemanha, Finlândia, França, Noruega, Rússia e Suécia. A nível mundial são descritas neste trabalho pela primeira vez as associações das espécies B. hellenicus e B. tusciae ao hospedeiro vegetal P. pinaster.
Resumo:
The molecular profiling system was developed using directed terminal-restriction fragment length polymorphism (dT-RFLP) to characterize soil nematode assemblages by relative abundance of feeding guilds and validation by comparison to traditional morphological method. The good performance of these molecular tools applied to soil nematodes assemblages create an opportunity to develop a novel approach for rapid assessment of the biodiversity changes of benthic nematodes assemblages of marine and estuarine sediments. The main aim of this research is to combine morphological and molecular analysis of estuarine nematodes assemblages, to establish a tool for fast assessment of the biodiversity changes within habitat recovery of Zostera noltii seagrass beds; and validate the dT-RFLP as a high-throughput tool to assess the system recovery. It was also proposed to develop a database of sequences related to individuals identified at species level to develop a new taxonomic reference system. A molecular phylogenetic analysis of the estuarine nematodes has being performed. After morphological identification, barcoding of 18S rDNA are being determined for each nematode species and the results have shown a good degree of concordance between traditional morphology-based identification and DNA sequences. The digest strategy developed for soil nematodes is not suitable for marine nematodes. Then five samples were cloned and sequenced and the sequence data was used to design a new dT-RFLP strategy to adapt this tool to marine assemblages. Several solutions were presented by DRAT and tested empirically to select the solution that cuts most efficiently, separating the different clusters. The results of quantitative PCR showed differences in nematode density between two sampling stations according the abundance of the nematode density obtained by the traditional methods. These results suggest that qPCR could be a robust tool for enumeration of nematode abundance, saving time.
Resumo:
In Europe, the concerns with the status of marine ecosystems have increased, and the Marine Directive has as main goal the achievement of Good Environmental Status (GES) of EU marine waters by 2020. Molecular tools are seen as promising and emerging approaches to improve ecosystem monitoring, and have led ecology into a new era, representing perhaps the most source of innovation in marine monitoring techniques. Benthic nematodes are considered ideal organisms to be used as biological indicator of natural and anthropogenic disturbances in aquatic ecosystems underpinning monitoring programmes on the ecological quality of marine ecosystems, very useful to assess the GES of the marine environment. dT-RFLP (directed Terminal-Restriction Fragment Length Polymorphism) allows to assess the diversity of nematode communities, but also allows studying the functioning of the ecosystem, and combined with relative real-time PCR (qPCR), provides a high-throughput semi-quantitative characterization of nematode communities. These characteristics make the two molecular tools good descriptors for the good environmental status assessment. The main aim of this study is to develop and optimize the dT-RFLP and qPCR in Mira estuary (SW coast, Portugal). A molecular phylogenetic analysis of marine and estuarine nematodes is being performed combining morphological and molecular analysis to evaluate the diversity of free-living marine nematodes in Mira estuary. After morphological identification, barcoding of 18S rDNA and COI genes are being determined for each nematode species morphologically identified. So far we generated 40 new sequences belonging to 32 different genus and 17 families, and the study has shown a good degree of concordance between traditional morphology-based identification and DNA sequences. These results will improve the assessment of marine nematode diversity and contribute to a more robust nematode taxonomy. The DNA sequences are being used to develop the dT-RFLP with the ability to easily process large sample numbers (hundreds and thousands), rather than typical of classical taxonomic or low throughput molecular analyses. A preliminary study showed that the digest enzymes used in dT-RFLP for terrestrial assemblages separated poorly the marine nematodes at taxonomic level for functional group analysis. A new digest combination was designed using the software tool DRAT (Directed Terminal Restriction Analysis Tool) to distinguished marine nematode taxa. Several solutions were provided by DRAT and tested empirically to select the solution that cuts most efficiently. A combination of three enzymes and a single digest showed to be the best solution to separate the different clusters. Parallel to this, another tool is being developed to estimate the population size (qPCR). An improvement in qPCR estimation of gene copy number using an artificial reference is being performed for marine nematodes communities to quantify the abundance. Once developed, it is proposed to validate both methodologies by determining the spatial and temporal variability of benthic nematodes assemblages across different environments. The application of these high-throughput molecular approaches for benthic nematodes will improve sample throughput and their implementation more efficient and faster as indicator of ecological status of marine ecosystems.
Resumo:
The occurrence of Bursaphelenchus species in the Czech Republic is poorly known, the first report of the genus being made by Kubátová et al. (2000) who reported the association of B. eremus with the hyphomycetous microfungus, Esteya vermicola, and the bark beetle, Scolytus intricatus, collected from Quercus robur, in central Bohemia. To date, four other species have been reported from the country, namely B. fungivorus (Braasch et al., 2002), B. hofmanni (see Braasch, 2001), B. mucronatus (see Braasch, 2001) and B. vallesianus (Gaar et al., 2006). More recently, a survey for Bursaphelenchus species associated with bark- and wood-boring insects in the Czech Republic identified B. pinophilus Brzeski & Baujard, 1997 from the Moravia region. Although this represents a new country record, it was also associated with nematangia on the hind wings of a new insect vector. A total of 404 bark- and wood-boring insects were collected from declining or symptomatic trees and screened for the presence of Bursaphelenchus. Bark and longhorn beetles were captured manually after debarking parts of the trunk displaying symptoms of insect attacks. Longhorn beetle larvae were also collected together with logs cut from the trunk. Logs were kept at room temperature in the laboratory until insect emergence. Each adult insect was individually dissected in water and examined for nematodes. All nematodes resembling dauer juveniles of Bursaphelenchus were collected and identified by molecular characterisation using a region of ribosomal DNA (rDNA) containing the internal transcribed spacer regions ITS1 and ITS2. ITS-RFLP analyses using five restriction enzymes (AluI, HaeIII, HinfI, MspI, RsaI) were performed to generate the species-specific profile according to Burgermeister et al. (2009). Species identification was also confirmed by morphological data after culture of the dauers on Botrytis cinerea Pers. ex Ft., growing in 5% malt extract agar. During this survey, only species belonging to the Curculionidae, subfamily Scolytinae, revealed the presence of nematodes belonging to Bursaphelenchus. Dauers of this genus were found aggregated under the elytra in nematangia formed at the root of the hind wings (Fig. 1). The dauers were identified from 12 individuals of Pityogenes bidentatus (Herbst, 1783) (Coleoptera: Scolytinae) collected under the bark of Pinus sylvestris trunks. Each insect carried ca 10-100 dauers. The ITS-RFLP patterns of the dauers so obtained confirmed the identification of B. pinophilus associated with this insect species. Bursaphelenchus pinophilus has been found mainly in Europe and has been reported from various countries such as Poland (Brzeski & Baujard, 1997), Germany (Braasch, 2001), and Portugal (Penas et al., 2007). The recent detection of this species associated with dead P. koraiensis in Korea (Han et al., 2009) expands its geographical distribution and potential importance. It has been found associated only with Pinus species, but very little is known about the insect vector. The bark beetle, Hylurgus ligniperda, was initially suggested as the insect vector by Pe-nas et al. (2006), although the nematode associated with this insect was later reclassified as B. sexdentati by morphological and molecular analysis (Penas et al., 2007). According to the literature, P. bidentatus has been cited as a vector of Ektaphelenchus sp. (Kakuliya, 1966) in Georgia, and an unidentified nematode species in Spain (Roberston et al., 2008). Interestingly, B. pinophilus was found in the nematangia formed at the root of the hind wings of P. bidentatus. Although this phenomenon is not so common in other Bursaphelenchus species, B. rufipennis has been found recently in such a structure on the hind wings of the insect Dendroctonus rufipennis (Kanzaki et al., 2008). Although other nematode species (e.g., Ektaphelenchus spp.) are frequently found associated within the same nematangia (see Kanzaki et al., 2008), in this particular case, only dauers of B. pinophilus were identified. The association between B. pinophilus and P. bidentatus represents the first report of this biological association and the association with the Scolytinae strengthens the tight and specific links between this group of Bursaphelenchus species and members of the Scolytinae (Ryss et al., 2005).