1 resultado para 1044
em Repositório Científico da Universidade de Évora - Portugal
Filtro por publicador
- Rhode Island School of Design (1)
- Aberdeen University (6)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- Aquatic Commons (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (3)
- Biblioteca Digital - Universidad Icesi - Colombia (1)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (61)
- Boston College Law School, Boston College (BC), United States (1)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cámara de Comercio de Bogotá, Colombia (1)
- Cambridge University Engineering Department Publications Database (16)
- CentAUR: Central Archive University of Reading - UK (17)
- Chapman University Digital Commons - CA - USA (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (34)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (4)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (2)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons @ Winthrop University (3)
- Digital Commons at Florida International University (17)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (3)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (5)
- Greenwich Academic Literature Archive - UK (10)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (7)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (2)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Livre Saber - Repositório Digital de Materiais Didáticos - SEaD-UFSCar (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- Ministerio de Cultura, Spain (9)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (127)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (14)
- Queensland University of Technology - ePrints Archive (12)
- RepoCLACAI - Consorcio Latinoamericano Contra el Aborto Inseguro (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (65)
- School of Medicine, Washington University, United States (5)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (10)
- Universidad Politécnica de Madrid (2)
- Universidade Federal do Pará (1)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (9)
- University of Michigan (12)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (1)
Resumo:
Acute Coronary Syndrome (ACS) is transversal to a broad and heterogeneous set of human beings, and assumed as a serious diagnosis and risk stratification problem. Although one may be faced with or had at his disposition different tools as biomarkers for the diagnosis and prognosis of ACS, they have to be previously evaluated and validated in different scenarios and patient cohorts. Besides ensuring that a diagnosis is correct, attention should also be directed to ensure that therapies are either correctly or safely applied. Indeed, this work will focus on the development of a diagnosis decision support system in terms of its knowledge representation and reasoning mechanisms, given here in terms of a formal framework based on Logic Programming, complemented with a problem solving methodology to computing anchored on Artificial Neural Networks. On the one hand it caters for the evaluation of ACS predisposing risk and the respective Degree-of-Confidence that one has on such a happening. On the other hand it may be seen as a major development on the Multi-Value Logics to understand things and ones behavior. Undeniably, the proposed model allows for an improvement of the diagnosis process, classifying properly the patients that presented the pathology (sensitivity ranging from 89.7% to 90.9%) as well as classifying the absence of ACS (specificity ranging from 88.4% to 90.2%).