3 resultados para 090104 Aircraft Performance and Flight Control Systems

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this paper is to expose and validate a methodology to design efficient automatic controllers for irrigation canals, based on the Saint-Venant model. This model-based methodology enables to design controllers at the design stage (when the canal is not already built). The methodology is applied on an experimental canal located in Portugal. First the full nonlinear PDE model is calibrated, using a single steady-state experiment. The model is then linearized around a functioning point, in order to design linear PI controllers. Two classical control strategies are tested (local upstream control and distant downstream control) and compared on the canal. The experimental results show the effectiveness of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regarding canal management modernization, water savings and water delivery quality, the study presents two automatic canal control approaches of the PI (Proportional and Integral) type: the distant and the local downstream control modes. The two PI controllers are defined, tuned and tested using an hydraulic unsteady flow simulation model, particularly suitable for canal control studies. The PI control parameters are tuned using optimization tools. The simulations are done for a Portuguese prototype canal and the PI controllers are analyzed and compared considering a demand-oriented-canal operation. The paper presents and analyzes the two control modes answers for five different offtake types – gate controlled weir, gate controlled orifice, weir with or without adjustable height and automatic flow adjustable offtake. The simulation results are compared using water volumes performance indicators (considering the demanded, supplied and the effectives water volumes) and a time indicator, defined taking into account the time during which the demand discharges are effective discharges. Regarding water savings, the simulation results for the five offtake types prove that the local downstream control gives the best results (no water operational losses) and that the distant downstream control presents worse results in connection with the automatic flow adjustable offtakes. Considering the water volumes and time performance indicators, the best results are obtained for the automatic flow adjustable offtakes and the worse for the gate controlled orifices, followed by the weir with adjustable height.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generalize the Liapunov convexity theorem's version for vectorial control systems driven by linear ODEs of first-order p = 1 , in any dimension d ∈ N , by including a pointwise state-constraint. More precisely, given a x ‾ ( ⋅ ) ∈ W p , 1 ( [ a , b ] , R d ) solving the convexified p-th order differential inclusion L p x ‾ ( t ) ∈ co { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e., consider the general problem consisting in finding bang-bang solutions (i.e. L p x ˆ ( t ) ∈ { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e.) under the same boundary-data, x ˆ ( k ) ( a ) = x ‾ ( k ) ( a ) & x ˆ ( k ) ( b ) = x ‾ ( k ) ( b ) ( k = 0 , 1 , … , p − 1 ); but restricted, moreover, by a pointwise state constraint of the type 〈 x ˆ ( t ) , ω 〉 ≤ 〈 x ‾ ( t ) , ω 〉 ∀ t ∈ [ a , b ] (e.g. ω = ( 1 , 0 , … , 0 ) yielding x ˆ 1 ( t ) ≤ x ‾ 1 ( t ) ). Previous results in the scalar d = 1 case were the pioneering Amar & Cellina paper (dealing with L p x ( ⋅ ) = x ′ ( ⋅ ) ), followed by Cerf & Mariconda results, who solved the general case of linear differential operators L p of order p ≥ 2 with C 0 ( [ a , b ] ) -coefficients. This paper is dedicated to: focus on the missing case p = 1 , i.e. using L p x ( ⋅ ) = x ′ ( ⋅ ) + A ( ⋅ ) x ( ⋅ ) ; generalize the dimension of x ( ⋅ ) , from the scalar case d = 1 to the vectorial d ∈ N case; weaken the coefficients, from continuous to integrable, so that A ( ⋅ ) now becomes a d × d -integrable matrix; and allow the directional vector ω to become a moving AC function ω ( ⋅ ) . Previous vectorial results had constant ω, no matrix (i.e. A ( ⋅ ) ≡ 0 ) and considered: constant control-vertices (Amar & Mariconda) and, more recently, integrable control-vertices (ourselves).