24 resultados para Knowledge representation
Resumo:
Plants of genus Schinus are native South America and introduced in Mediterranean countries, a long time ago. Some Schinus species have been used in folk medicine, and Essential Oils of Schinus spp. (EOs) have been reported as having antimicrobial, anti-tumoural and anti-inflammatory properties. Such assets are related with the EOs chemical composition that depends largely on the species, the geographic and climatic region, and on the part of the plants used. Considering the difficulty to infer the pharmacological properties of EOs of Schinus species without a hard experimental setting, this work will focus on the development of an Artificial Intelligence grounded Decision Support System to predict pharmacological properties of Schinus EOs. The computational framework was built on top of a Logic Programming Case Base approach to knowledge representation and reasoning, which caters to the handling of incomplete, unknown, or even self-contradictory information. New clustering methods centered on an analysis of attribute’s similarities were used to distinguish and aggregate historical data according to the context under which it was added to the Case Base, therefore enhancing the prediction process.
Resumo:
In an organisation any optimization process of its issues faces increasing challenges and requires new approaches to the organizational phenomenon. Indeed, in this work it is addressed the problematic of efficiency dynamics through intangible variables that may support a different view of the corporations. It focuses on the challenges that information management and the incorporation of context brings to competitiveness. Thus, in this work it is presented the analysis and development of an intelligent decision support system in terms of a formal agenda built on a Logic Programming based methodology to problem solving, complemented with an attitude to computing grounded on Artificial Neural Networks. The proposed model is in itself fairly precise, with an overall accuracy, sensitivity and specificity with values higher than 90 %. The proposed solution is indeed unique, catering for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in a quantitative or qualitative arrangement.
Resumo:
The authors present a proposal to develop intelligent assisted living environments for home based healthcare. These environments unite the chronical patient clinical history sematic representation with the ability of monitoring the living conditions and events recurring to a fully managed Semantic Web of Things (SWoT). Several levels of acquired knowledge and the case based reasoning that is possible by knowledge representation of the health-disease history and acquisition of the scientific evidence will deliver, through various voice based natural interfaces, the adequate support systems for disease auto management but prominently by activating the less differentiated caregiver for any specific need. With these capabilities at hand, home based healthcare providing becomes a viable possibility reducing the institutionalization needs. The resulting integrated healthcare framework will provide significant savings while improving the generality of health and satisfaction indicators.
Resumo:
It is well known that human resources play a valuable role in a sustainable organizational development. Indeed, this work will focus on the development of a decision support system to assess workers’ satisfaction based on factors related to human resources management practices. The framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based approach to computing. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data or knowledge in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process.
Resumo:
Knee osteoarthritis is the most common type of arthritis and a major cause of impaired mobility and disability for the ageing populations. Therefore, due to the increasing prevalence of the malady, it is expected that clinical and scientific practices had to be set in order to detect the problem in its early stages. Thus, this work will be focused on the improvement of methodologies for problem solving aiming at the development of Artificial Intelligence based decision support system to detect knee osteoarthritis. The framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based approach to computing that caters for the handling of incomplete, unknown, or even self-contradictory information.
Resumo:
It is well known that the dimensions of the pelvic bones depend on the gender and vary with the age of the individual. Indeed, and as a matter of fact, this work will focus on the development of an intelligent decision support system to predict individual’s age based on pelvis’ dimensions criteria. On the one hand, some basic image processing technics were applied in order to extract the relevant features from pelvic X-rays. On the other hand, the computational framework presented here was built on top of a Logic Programming approach to knowledge representation and reasoning, that caters for the handling of incomplete, unknown, or even self-contradictory information, complemented with a Case Base approach to computing.
Resumo:
A link between patterns of pelvic growth and human life history is supported by the finding that, cross-culturally, variation in maturation rates of female pelvis are correlated with variation in ages of menarche and first reproduction, i.e., it is well known that the human dimensions of the pelvic bones depend on the gender and vary with the age. Indeed, one feature in which humans appear to be unique is the prolonged growth of the pelvis after the age of sexual maturity. Both the total superoinferior length and mediolateral breadth of the pelvis continues to grow markedly after puberty, and do not reach adult proportions until the late teens years. This continuation of growth is accomplished by relatively late fusion of the separate centers of ossification that form the bones of the pelvis. Hence, in this work we will focus on the development of an intelligent decision support system to predict individual’s age based on a pelvis' dimensions criteria. Some basic image processing techniques were applied in order to extract the relevant features from pelvic X-rays, being the computational framework built on top of a Logic Programming approach to Knowledge Representation and Reasoning that caters for the handling of incomplete, unknown, or even self-contradictory information, complemented with a Case Base approach to computing.
Resumo:
Dyscalculia is usually perceived of as a specific learning difficulty for mathematics or, more appropriately, arithmetic. Because definitions and diagnoses of dyscalculia are in their infancy and sometimes are contradictory. However, mathematical learning difficulties are certainly not in their infancy and are very prevalent and often devastating in their impact. Co-occurrence of learning disorders appears to be the rule rather than the exception. Co-occurrence is generally assumed to be a consequence of risk factors that are shared between disorders, for example, working memory. However, it should not be assumed that all dyslexics have problems with mathematics, although the percentage may be very high, or that all dyscalculics have problems with reading and writing. Because mathematics is very developmental, any insecurity or uncertainty in early topics will impact on later topics, hence to need to take intervention back to basics. However, it may be worked out in order to decrease its degree of severity. For example, disMAT, an app developed for android may help children to apply mathematical concepts, without much effort, that is turning in itself, a promising tool to dyscalculia treatment. Thus, this work will focus on the development of a Decision Support System to estimate children evidences of dyscalculia, based on data obtained on-the-fly with disMAT. The computational framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, grounded on a Case-based approach to computing, that allows for the handling of incomplete, unknown, or even self-contradictory information.
Resumo:
The AntiPhospholipid Syndrome (APS) is an acquired autoimmune disorder induced by high levels of antiphospholipid antibodies that cause arterial and veins thrombosis, as well as pregnancy-related complications and morbidity, as clinical manifestations. This autoimmune hypercoagulable state, usually known as Hughes syndrome, has severe consequences for the patients, being one of the main causes of thrombotic disorders and death. Therefore, it is required to be preventive; being aware of how probable is to have that kind of syndrome. Despite the updated of antiphospholipid syndrome classification, the diagnosis remains difficult to establish. Additional research on clinically relevant antibodies and standardization of their quantification are required in order to improve the antiphospholipid syndrome risk assessment. Thus, this work will focus on the development of a diagnosis decision support system in terms of a formal agenda built on a Logic Programming approach to knowledge representation and reasoning, complemented with a computational framework based on Artificial Neural Networks. The proposed model allows for improving the diagnosis, classifying properly the patients that really presented this pathology (sensitivity higher than 85%), as well as classifying the absence of APS (specificity close to 95%).