3 resultados para terrestrial algae
Resumo:
Sewage sludge applied to soils as a fertilizer often contains metals and linear alkylbenzene sulphonate (LAS) as contaminants. These pollutants can be transported to the aquatic environment where they can alter the phosphatase activity in living organisms. The acid phosphatase of algae plays important roles in metabolism such as decomposing organic phosphate into free phosphate and autophagic digestive processes. The order of in vitro inhi- bition of Pseudokirchneriella subcapitata acid phosphatase at the highest concentration tested was LAS[Hg2? = Al 3?[Se4? = Pb2?[Cd2?. A non-competitive inhibi- tion mechanism was obtained for Hg2? (Ki = 0.040 mM) and a competitive inhibition for LAS (Ki = 0.007 mM). In vivo studies with treated algae cultures showed that the inhibition of specific activity was observed in algae exposed during 7 days, in contrast to short term (24 h) treatments with both these chemicals. Our results suggest that the inhibition parameters in vitro did not markedly differ between the two chemicals. On the other hand, in vivo evaluations showed strong differences between both pollu- tants regarding the concentration values and the degree of response.
Resumo:
The in vitro activation effect of copper on the acid phosphatase of the green algae Pseudokirch- neriella subcapitata (formely Selenastrum capricor- nutum) under preincubation condition. Apparent Michaelis constant values of 1.21 and 0.37 mM, and activation energy values of 26.8 and 13.6 kJ mol -1 were determined in the absence and in the presence of 0.2 mM Cu2?, respectively. The dissociation constant value for Cu2? binding to the enzyme was determined to be 22.04 lM. The decrease of the apparent Michaelis constant (Km) and activation energy values in the presence of Cu2? correlates well with its activating effect on the acid phosphatase activity. This propriety could be used as a sensitive bioindicator for copper in environmental samples.
Resumo:
RESUMO: O girassol é uma importante cultura na região de Parecis, no Cerrado brasileiro. Em 2014, a região respondeu pela produção de 232.700 t de grãos, 45% da produção nacional. A produção de girassol provém principalmente de um sistema que tem a soja como cultura principal. A associação entre soja e girassol pode reduzir impactos ambientais devido ao uso compartilhado de recursos. Este estudo desenvolveu uma Avaliação de Ciclo de Vida (ACV) ?do berço ao túmulo? do sistema de produção soja-girassol usado na região de Parecis e comparou seu perfil ambiental ao das monoculturas de soja e girassol. Impactos relacionados ao uso do solo (emissões da mudança de uso da terra e calagem) por cada cultura foram alocados em função do tempo de ocupação do solo. O sistema soja-girassol teve impactos ambientais menores em todas as categorias de impacto quando comparado à monocultura de soja e girassol, com o mesmo rendimento. Reduções importantes foram observadas em ?Mudança do Clima?, ?Acidificação Terrestre? e ?Formação de Material Particulado?. ABSTRACT: Sunflower is an important crop in Parecis region of the Brazilian Cerrado. In 2014 the region accounted for the production of 232,700 tons of sunflower grain, 45% of national production. Sunflower production comes mostly from a system that has soybean as the main crop. The association of soybean and sunflower can reduce environmental impacts due to shared use of resources. This study performed a ?cradle to gate? Life Cycle Assessment (LCA) of the soybean-sunflower production system used in Parecis region and compared its environmental profile to that of the monoculture of these two crops. Impacts related to the use of soil (land use change emissions and liming) by each crop were evaluated according to time of soil occupation criterion. Soybean-sunflower system had lower environmental impacts on every impact category comparing to soybean and sunflower monoculture with the same yield. Important reduction were observed on ?Climate change?, ?Terrestrial acidification? and ?Particulate matter formation? categories.