3 resultados para temporal speech information
Resumo:
Collecting ground truth data is an important step to be accomplished before performing a supervised classification. However, its quality depends on human, financial and time ressources. It is then important to apply a validation process to assess the reliability of the acquired data. In this study, agricultural infomation was collected in the Brazilian Amazonian State of Mato Grosso in order to map crop expansion based on MODIS EVI temporal profiles. The field work was carried out through interviews for the years 2005-2006 and 2006-2007. This work presents a methodology to validate the training data quality and determine the optimal sample to be used according to the classifier employed. The technique is based on the detection of outlier pixels for each class and is carried out by computing Mahalanobis distances for each pixel. The higher the distance, the further the pixel is from the class centre. Preliminary observations through variation coefficent validate the efficiency of the technique to detect outliers. Then, various subsamples are defined by applying different thresholds to exclude outlier pixels from the classification process. The classification results prove the robustness of the Maximum Likelihood and Spectral Angle Mapper classifiers. Indeed, those classifiers were insensitive to outlier exclusion. On the contrary, the decision tree classifier showed better results when deleting 7.5% of pixels in the training data. The technique managed to detect outliers for all classes. In this study, few outliers were present in the training data, so that the classification quality was not deeply affected by the outliers.
Resumo:
Monitoring agricultural crops constitutes a vital task for the general understanding of land use spatio-temporal dynamics. This paper presents an approach for the enhancement of current crop monitoring capabilities on a regional scale, in order to allow for the analysis of environmental and socio-economic drivers and impacts of agricultural land use. This work discusses the advantages and current limitations of using 250m VI data from the Moderate Resolution Imaging Spectroradiometer (MODIS) for this purpose, with emphasis in the difficulty of correctly analyzing pixels whose temporal responses are disturbed due to certain sources of interference such as mixed or heterogeneous land cover. It is shown that the influence of noisy or disturbed pixels can be minimized, and a much more consistent and useful result can be attained, if individual agricultural fields are identified and each field's pixels are analyzed in a collective manner. As such, a method is proposed that makes use of image segmentation techniques based on MODIS temporal information in order to identify portions of the study area that agree with actual agricultural field borders. The pixels of each portion or segment are then analyzed individually in order to estimate the reliability of the temporal signal observed and the consequent relevance of any estimation of land use from that data. The proposed method was applied in the state of Mato Grosso, in mid-western Brazil, where extensive ground truth data was available. Experiments were carried out using several supervised classification algorithms as well as different subsets of land cover classes, in order to test the methodology in a comprehensive way. Results show that the proposed method is capable of consistently improving classification results not only in terms of overall accuracy but also qualitatively by allowing a better understanding of the land use patterns detected. It thus provides a practical and straightforward procedure for enhancing crop-mapping capabilities using temporal series of moderate resolution remote sensing data.
Resumo:
Introduction: Brazil, is one of the main agricultural producers in the world ranking 1st in the production of sugarcane, coffee and oranges. It is also 2nd as world producer of soybeans and a leader in the harvested yields of many other crops. The annual consumption of mineral fertilizers exceeds 20 million mt, 30% of which corresponds to potash fertilizers (ANDA, 2006). From this statistic it may be supposed that fertilizer application in Brazil is rather high, compared with many other countries. However, even if it is assumed that only one fourth of this enormous 8.5 million km2 territory is used for agriculture, average levels of fertilizer application per hectare of arable land are not high enough for sustainable production. One of the major constraints is the relatively low natural fertility status of the soils which contain excessive Fe and Al oxides. Agriculture is also often practised on sandy soils so that the heavy rainfall causes large losses of nutrients through leaching. In general, nutrient removal by crops such as sugarcane and tropical fruits is much more than the average nutrient application via fertilization, especially in regions with a long history of agricultural production. In the recently developed areas, especially in the Cerrado (Brazilian savanna) where agriculture has expanded since 1980, soils are even poorer than in the "old" agricultural regions, and high costs of mineral fertilizers have become a significant input factor in determining soybean, maize and cotton planting. The consumption of mineral fertilizers throughout Brazil is very uneven. According to the 1995/96 Agricultural Census, only in eight of the total of 26 Brazilian states, were 50 per cent or more of the farms treated "systematically" with mineral fertilizers; in many states it was less than 25 per cent, and in five states even less than 12 per cent (Brazilian Institute for Geography and Statistics; Censo Agropecuario1995/96, Instituto Brazileiro de Geografia e Estadistica; IBGE, www.ibge.gov.br). The geographical application distribution pattern of mineral fertilizers may be considered as an important field of research. Understanding geographical disparities in fertilization level requires a complex approach. This includes evaluation of the availability of nutrients in the soil (and related soil properties e.g. CEC and texture), the input of nutrients with fertilizer application, and the removal of nutrients by harvested yields. When all these data are compiled, it is possible to evaluate the balance of particular nutrients for certain areas, and make conclusions as to where agricultural practices should be optimized. This kind of research is somewhat complicated, because it relies on completely different sources of data, usually from incomparable data sources, e.g. soil characteristics attributed to soil type areas, in contrast to yields by administrative regions, or farms. A priority tool in this case is the Geographical Information System (GIS), which enables attribution of data from different fields to the same territorial units, and makes possible integration of these data in an "inputoutput" model, where "input" is the natural availability of a nutrient in the soil plus fertilization, and "output" export of the same nutrient with the removed harvested yield.