4 resultados para quantitative trait loci (QTLs)
Resumo:
Abstract: Selection among broilers for performance traits is resulting in locomotion problems and bone disorders, once skeletal structure is not strong enough to support body weight in broilers with high growth rates. In this study, genetic parameters were estimated for body weight at 42 days of age (BW42), and tibia traits (length, width, and weight) in a population of broiler chickens. Quantitative trait loci (QTL) were identified for tibia traits to expand our knowledge of the genetic architecture of the broiler population. Genetic correlations ranged from 0.56 +/- 0.18 (between tibia length and BW42) to 0.89 +/- 0.06 (between tibia width and weight), suggesting that these traits are either controlled by pleiotropic genes or by genes that are in linkage disequilibrium. For QTL mapping, the genome was scanned with 127 microsatellites, representing a coverage of 2630 cM. Eight QTL were mapped on Gallus gallus chromosomes (GGA): GGA1, GGA4, GGA6, GGA13, and GGA24. The QTL regions for tibia length and weight were mapped on GGA1, between LEI0079 and MCW145 markers. The gene DACH1 is located in this region; this gene acts to form the apical ectodermal ridge, responsible for limb development. Body weight at 42 days of age was included in the model as a covariate for selection effect of bone traits. Two QTL were found for tibia weight on GGA2 and GGA4, and one for tibia width on GGA3. Information originating from these QTL will assist in the search for candidate genes for these bone traits in future studies.
Resumo:
Genomic selection (GS) has recently been proposed as a new selection strategy which represents an innovative paradigm in crop improvement, now widely adopted in animal breeding. Genomic selection relies on phenotyping and high-density genotyping of a sufficiently large and representative sample of the target breeding population, so that the majority of loci that regulate a quantitative trait are in linkage disequilibrium with one or more molecular markers and can thus be captured by selection. In this study we address genomic selection in a practical fruit breeding context applying it to a breeding population of table grape obtained from a cross between the hybrid genotype D8909-15 (Vitis rupestris × Vitis arizonica/girdiana), which is resistant to dagger nematode and Pierce?s disease (PD), and ?B90-116?, a susceptible Vitis vinifera cultivar with desirable fruit characteristics. Our aim was to enhance the knowledge on the genomic variation of agronomical traits in table grape populations for future use in marker-assisted selection (MAS) and GS, by discovering a set of molecular markers associated with genomic regions involved in this variation. A number of Quantitative Trait Loci (QTL) were discovered but this method is inaccurate and the genetic architecture of the studied population was better captured by the BLasso method of genomic selection, which allowed for efficient inference about the genetic contribution of the various marker loci. The technology of genomic selection afforded greater efficiency than QTL analysis and can be very useful in speeding up the selection procedures for agronomic traits in table grapes.
Resumo:
desenvolvimento de novas cultivares de uvas sem sementes é uma das prioridades dos programas de melhoramento de uvas de mesa do mundo. Em trabalho anterior o nosso grupo detectou um QTL (quantitative trait locus) para ausência de sementes no cromossomo 18 no locus SDI (seed development inhibitor). Evidências adicionais demonstraram que o gene VvAGL11, localizado neste locus, possui papel fundamental na morfogênese de sementes em videira. O objetivo deste trabalho foi genotipar acessos apirêincos e pirênicos com nove marcadores do tipo SNP e INDEL únicos para o alelo associado a ausência de sementes em Vitis vinifera e verificar se a metodologia de genotipagem baseada em KASP? tem potencial de uso em seleção assistida.
Resumo:
Background: Copy number variations (CNVs) have been shown to account for substantial portions of observed genomic variation and have been associated with qualitative and quantitative traits and the onset of disease in a number of species. Information from high-resolution studies to detect, characterize and estimate population-specific variant frequencies will facilitate the incorporation of CNVs in genomic studies to identify genes affecting traits of importance. Results: Genome-wide CNVs were detected in high-density single nucleotide polymorphism (SNP) genotyping data from 1,717 Nelore (Bos indicus) cattle, and in NGS data from eight key ancestral bulls. A total of 68,007 and 12,786 distinct CNVs were observed, respectively. Cross-comparisons of results obtained for the eight resequenced animals revealed that 92 % of the CNVs were observed in both datasets, while 62 % of all detected CNVs were observed to overlap with previously validated cattle copy number variant regions (CNVRs). Observed CNVs were used for obtaining breed-specific CNV frequencies and identification of CNVRs, which were subsequently used for gene annotation. A total of 688 of the detected CNVRs were observed to overlap with 286 non-redundant QTLs associated with important production traits in cattle. All of 34 CNVs previously reported to be associated with milk production traits in Holsteins were also observed in Nelore cattle. Comparisons of estimated frequencies of these CNVs in the two breeds revealed 14, 13, 6 and 14 regions in high (>20 %), low (<20 %) and divergent (NEL > HOL, NEL < HOL) frequencies, respectively. Conclusions: Obtained results significantly enriched the bovine CNV map and enabled the identification of variants that are potentially associated with traits under selection in Nelore cattle, particularly in genome regions harboring QTLs affecting production traits.