10 resultados para physical soil characteristics
Resumo:
Coffea sp. is cultivated in large areas, using both conventional and organic management. However, information about the sustainability of these two management systems is still deficient. The objective of the present study was to evaluate the physical properties of soil cultivated with Conilon coffee (C. canephora) under organic and conventional management. Two areas cultivated with Conilon coffee (under organic and conventional management) and a fragment of Atlantic forest, used as a reference, were selected for the experiment. Soil granulometry, hydraulic conductivity, water retention curve, resistance to penetration, porosity, optimal hydric interval, and other physical characteristics were measured at depths of 0 to 10 and 10 to 20 cm. The data was submitted to multivariate and descriptive statistical analyses. Higher similarity was observed between the soil cultivated with Conilon coffee under organic management and the Atlantic forest soil. Soil resistance to penetration at 10, 30, 100, 500 and 1500 kPa, macro porosity, density and total porosity were the main physical properties that differentiated both management systems studied. The non-use of agricultural machinery and the addition of organic matter may be the main reasons for higher soil sustainability observed under organic management when compared with the conventional system.
Resumo:
Pseudomonas may use as bioremediator and as biopesticide. The use of soil enzymatic assays as biological indicator of possible negative effects in soil functioning was evaluated after P.putida AF7 inoculation. For that, AF7 was originally isolated from the rizosphere of rice and was inoculated on three soils: Rhodic Hapludox (RH), Typic Hapludox (TH); and Arenic Hapludult (AH). Soil characteristics were measured in each plot. Acid phosphatase, ?-glucosidase and protease activities were measured at 7, 14 and 21 days. The enzyme activity waved during the experimental period but there is a significant reduction of ?-glucosidase activity in RH soil on day 14. Corg was positively correlated to the activities of ?-glucosidase and protease. The presented data indicate that soil biochemical properties may be useful as indicator of soil perturbations.
Resumo:
Introduction. Specific sites selecting criteria. Soil characteristics for establishment of a specific site. Main steps and recommendations for a specific site selection and placement. Climatic characterization.
Resumo:
The need for solutions to minimize the negative environmental impacts of anthropogenic activities Fhas increased. Sewage sludge is composed of predominantly organic matter and can be used to improve soil characteristics, such as fertility. Therefore, its application in agriculture is an adequate alternative for its final disposal. However, there is a lack of information on its long-term effects on soil changes in tropical areas. Thus, the objectives of this study were to determine (i) the effect of sewage sludge application on heavy metal build-up in soil and maize grains and leaves, and (ii) the effects of soil amendment with sewage sludge on the chemical properties of a Brazilian oxisol. Besides the increasing levels of Zn, Cu, Ni, and Cr, amending soil with sewage sludge also alters the distribution of these metals by increasing the mobile Phases, which correlated significantly with the increase in metal extraction with two single extractants, Mehlich 1 and DTPA (Diethylene triamine pentaacetic acid). The levels of Fe, Mn, Zn, and Cu in maize grains and leaves increased with the type and rate of sewage sludge application. Nevertheless, metal build-up in soil and plants was within the allowed limits. Significant differences were also found in soil characteristics like humic fractionation with the applied sewage doses. The data obtained does not indicate any expressive drawbacks in the use of sewage sludge as a soil amendment, as the heavy metal concentrations observed are unlikely to cause any environmental or health problems, even overestimated loadings, and are in accordance with the Brazilian regulations on farming land biosolid disposal.
Resumo:
Resumo: A utilização do composto orgânico proveniente de resíduos da criação e abate de pequenos ruminantes pode elevar a produção de matéria seca do capim-elefante, tendo em vista o teor de nutrientes contidos nesse fertilizante orgânico, diminuindo os impactos da produção animal sobre o ambiente e reduzindo os custos de produção na área de capineira de capim-elefante. Dada à escassez de informações na literatura e a importância do manejo adequado da adubação orgânica na agropecuária, objetivou-se avaliar os atributos químicos e físicos do solo, o estado nutricional e a produção do capim-elefante submetido à aplicação de doses do composto orgânico proveniente de resíduos da produção e abate de pequenos ruminantes. O delineamento experimental adotado foi em parcelas subdivididas, com medidas repetidas no tempo, sendo as parcelas as doses (0; 13,3; 26,6; 39,9; 52,3; 79,8 t ha-1 ) de composto orgânico e um tratamento adicional com adubos minerais e as subparcelas os ciclos (1, 2, 3 e 4) com 4 blocos, totalizando 28 parcelas. As variáveis mensuradas foram atributos físicos e químicos do solo, a diagnose foliar e a produtividade de capim-elefante. Para o fator ciclo, a adubação orgânica incrementou a umidade gravimétrica e umidade volumétrica e ainda houve diminuição da densidade de partículas em função dos ciclos. Com as doses do fertilizante orgânico houve aumento nas concentrações da matéria orgânica, amônio, nitrato, amônio + nitrato, fósforo e saturação por base; houve redução do valor da acidez potencial, além da elevação dos teores de nitrogênio e fósforo nas plantas. As doses de composto orgânico aumentaram a biomassa de forragem total de capim elefante. A adubação mineral proporcionou maior incremento da produção do capim em relação à adubação orgânica no decorrer dos ciclos. Abstract: The use of organic compost from residues of production and slaughter of small ruminants can increase dry matter production of elephant grass, in due function of quantity nutrients in this compost, thus reducing the animal production impacts in the environment and production costs in elephant grass fields. Due to the Lack of information in literature and the importance regarding organic fertilization in agriculture, the aim of this work was evaluate chemical and physical soil attributes, nutritional status in plants and production of elephant grass in function of doses of organic compound of residues of production and slaughter of small ruminants. The experimental design was in split-plot, with the main treatment the doses (0; 13,3; 26,6; 39,9; 52,3; 79,8 t ha-1 ) of organic compost and one additional treatment with mineral fertilization and secondary treatments was the cycles (1, 2, 3 and 4) with 4 blocks, and 28 plots. The measured variables were physical and chemical attributes in the soil, nutritional diagnosis in plants and production of elephant grass. For cycle factor the organic fertilization increased gravimetric and volumetric humidity, yet, occurred decrease of density in function of cycles. With the doses of organic compost increased organic matter, ammonium, nitrate, ammonium + nitrate, phosphor and base saturation; and decreased the value of potential acidity; and increased content of N and P in plants. The doses of organic compost increased the elephant grass production. The mineral fertilization increased the elephant grass production in relation of organic fertilization over the cycles.
Resumo:
A utilização do composto orgânico proveniente de resíduos da criação e abate de pequenos ruminantes pode elevar a produção de matéria seca do capim-elefante, tendo em vista o teor de nutrientes contidos nesse fertilizante orgânico, diminuindo os impactos da produção animal sobre o ambiente e reduzindo os custos de produção na área de capineira de capim-elefante. Dada à escassez de informações na literatura e a importância do manejo adequado da adubação orgânica na agropecuária, objetivou-se avaliar os atributos químicos e físicos do solo, o estado nutricional e a produção do capim-elefante submetido à aplicação de doses do composto orgânico proveniente de resíduos da produção e abate de pequenos ruminantes. O delineamento experimental adotado foi em parcelas subdivididas, com medidas repetidas no tempo, sendo as parcelas as doses (0; 13,3; 26,6; 39,9; 52,3; 79,8 t ha-1) de composto orgânico e um tratamento adicional com adubos minerais e as subparcelas os ciclos (1, 2, 3 e 4) com 4 blocos, totalizando 28 parcelas. As variáveis mensuradas foram atributos físicos e químicos do solo, a diagnose foliar e a produtividade de capim-elefante. Para o fator ciclo, a adubação orgânica incrementou a umidade gravimétrica e umidade volumétrica e ainda houve diminuição da densidade de partículas em função dos ciclos. Com as doses do fertilizante orgânico houve aumento nas concentrações da matéria orgânica, amônio, nitrato, amônio + nitrato, fósforo e saturação por base; houve redução do valor da acidez potencial, além da elevação dos teores de nitrogênio e fósforo nas plantas. As doses de composto orgânico aumentaram a biomassa de forragem total de capimelefante. A adubação mineral proporcionou maior incremento da produção do capim em relação à adubação orgânica no decorrer dos ciclos. Abstract: The use of organic compost from residues of production and slaughter of small ruminants can increase dry matter production of elephant grass, in due function of quantity nutrients in this compost, thus reducing the animal production impacts in the environment and production costs in elephant grass fields. Due to the Lack of information in literature and the importance regarding organic fertilization in agriculture, the aim of this work was evaluate chemical and physical soil attributes, nutritional status in plants and production of elephant grass in function of doses of organic compound of residues of production and slaughter of small ruminants. The experimental design was in split-plot, with the main treatment the doses (0; 13,3; 26,6; 39,9; 52,3; 79,8 t ha-1 ) of organic compost and one additional treatment with mineral fertilization and secondary treatments was the cycles (1, 2, 3 and 4) with 4 blocks, and 28 plots. The measured variables were physical and chemical attributes in the soil, nutritional diagnosis in plants and production of elephant grass. For cycle factor the organic fertilization increased gravimetric and volumetric humidity, yet, occurred decrease of density in function of cycles. With the doses of organic compost increased organic matter, ammonium, nitrate, ammonium + nitrate, phosphor and base saturation; and decreased the value of potential acidity; and increased content of N and P in plants. The doses of organic compost increased the elephant grass production. The mineral fertilization increased the elephant grass production in relation of organic fertilization over the cycles.
Resumo:
Introduction: Brazil, is one of the main agricultural producers in the world ranking 1st in the production of sugarcane, coffee and oranges. It is also 2nd as world producer of soybeans and a leader in the harvested yields of many other crops. The annual consumption of mineral fertilizers exceeds 20 million mt, 30% of which corresponds to potash fertilizers (ANDA, 2006). From this statistic it may be supposed that fertilizer application in Brazil is rather high, compared with many other countries. However, even if it is assumed that only one fourth of this enormous 8.5 million km2 territory is used for agriculture, average levels of fertilizer application per hectare of arable land are not high enough for sustainable production. One of the major constraints is the relatively low natural fertility status of the soils which contain excessive Fe and Al oxides. Agriculture is also often practised on sandy soils so that the heavy rainfall causes large losses of nutrients through leaching. In general, nutrient removal by crops such as sugarcane and tropical fruits is much more than the average nutrient application via fertilization, especially in regions with a long history of agricultural production. In the recently developed areas, especially in the Cerrado (Brazilian savanna) where agriculture has expanded since 1980, soils are even poorer than in the "old" agricultural regions, and high costs of mineral fertilizers have become a significant input factor in determining soybean, maize and cotton planting. The consumption of mineral fertilizers throughout Brazil is very uneven. According to the 1995/96 Agricultural Census, only in eight of the total of 26 Brazilian states, were 50 per cent or more of the farms treated "systematically" with mineral fertilizers; in many states it was less than 25 per cent, and in five states even less than 12 per cent (Brazilian Institute for Geography and Statistics; Censo Agropecuario1995/96, Instituto Brazileiro de Geografia e Estadistica; IBGE, www.ibge.gov.br). The geographical application distribution pattern of mineral fertilizers may be considered as an important field of research. Understanding geographical disparities in fertilization level requires a complex approach. This includes evaluation of the availability of nutrients in the soil (and related soil properties e.g. CEC and texture), the input of nutrients with fertilizer application, and the removal of nutrients by harvested yields. When all these data are compiled, it is possible to evaluate the balance of particular nutrients for certain areas, and make conclusions as to where agricultural practices should be optimized. This kind of research is somewhat complicated, because it relies on completely different sources of data, usually from incomparable data sources, e.g. soil characteristics attributed to soil type areas, in contrast to yields by administrative regions, or farms. A priority tool in this case is the Geographical Information System (GIS), which enables attribution of data from different fields to the same territorial units, and makes possible integration of these data in an "inputoutput" model, where "input" is the natural availability of a nutrient in the soil plus fertilization, and "output" export of the same nutrient with the removed harvested yield.
Resumo:
The effect of different methods of soil preparation on soil moisture loss, weed growth and soil resistance to penetration has been quantified for the Latosols of Bebedouro experiment station of CPATSA-EMBRAPA, Petrolina,PE, Brazil. The methods studied are manual preparation, preparation by animal drawn wheeled tool carrier and tractorized implements. The drying characteristics of three fields with different soil physical properties were studied prior to conducting the experiment. The different methods of soil preparation caused the soil moisture loss differently. The plot prepared by animal drawn tool carrier retained more moisture for longer time even at deeper layers. The soil resistance to penetration on the surface increased with time with little variation at deeper layers.
Resumo:
Soil organic matter (SOM) plays a key role in maintaining the productivity of tropical soils, providing energy and substrate for the biological activity and modifying the physical and chemical characteristics that ensure the maintenance of soil quality and the sustainability of ecosystems. This study assessed the medium-term effect (six years) of the application of five organic composts, produced by combining different agro-industrial residues, on accumulation and chemical characteristics of soil organic matter. Treatments were applied in a long-term experiment of organic management of mango (OMM) initiated in 2005 with a randomized block design with four replications. Two external areas, one with conventional mango cultivation (CMM) and the other a fragment of regenerating Caatinga vegetation (RCF), were used as reference areas. Soil samples were collected in the three management systems from the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m layers, and the total organic carbon content and chemical fractions of organic matter were evaluated by determining the C contents of humin and humic and fulvic acids. Organic compost application significantly increased the contents of total C and C in humic substances in the experimental plots, mainly in the surface layer. However, compost 3 (50 % coconut bagasse, 40 % goat manure, 10 % castor bean residues) significantly increased the level of the non-humic fraction, probably due to the higher contents of recalcitrant material in the initial composition. The highest increases from application of the composts were in the humin, followed by the fulvic fraction. Compost application increased the proportion of higher molecular weight components, indicating higher stability of the organic matter.
Resumo:
The soil carbon under Amazonian forests has an important roles in global changing, making information on the soil content and depths of these stocks are considerable interest in efforts to quantify soil carbon emissions to the atmosphere.This study quantified the content and soil organic carbon stock under primary forest up to 2 m depth, at different topographic positions, at Cuieiras Biological Reserve, Manaus/ ZF2, km 34, in the Central Amazon, evaluating the soil attributes that may influence the permanence of soil carbon. Soil samples were collected along a transect of 850 m on topographic gradient Oxisol (plateau), Ultisol (slope) and Spodosol (valley). The stocks of soil carbon were obtained by multiplying the carbon content, soil bulk density and trickiness of soil layers. The watershed was delimited by using STRM and IKONOS images and the carbon contend obtained in the transects was extrapolated as a way to evaluate the potential for carbon stocks in an area of 2678.68 ha. The total SOC was greater in Oxisol followed by Spodosol and Ultisol. It was found direct correlations between the SOC and soil physical attributes. Among the clay soils (Oxisol and Ultisol), the largest stocks of carbon were observed in Oxisol at both the transect (90 to 175.5 Mg C ha-1) as the level of watershed (100.2 to 195.2 Mg C ha-1). The carbon stocks under sandy soil (Spodosol) was greater to clay soils along the transect (160-241 Mg C ha-1) and near them in the Watershed (96.90 to 146.01 Mg C ha-1).