7 resultados para phosphorus fertilization and organic fertilization
Resumo:
The purpose of this study was to evaluate the response of the Champaka pineapple to inoculation with the diazotrophic bacterium Asaia bogorensis (strain 219) when grown with organic fertilizer in an irrigated sapota orchard. Plantlets were transplanted to tubes containing a mixture of worm compost and vermiculite and inoculated with 108 bacterial cells. After five and a half months of acclimatization the plantlets were transplanted in furrows in the sapota orchard. Fertilizer was placed at the bottom of the furrows and covered with three doses (2.5; 5.0 and 7.5 L linear m−1 row) of three organic composts. The successful association of the plantlets with the diazo-trophic bacterium was confirmed by most probable number analysis before transferring to the field. Plants inoculated with strain AB219 showed the greatest initial leaf growth and produced the heaviest fruits compared to uninoculated plants. Plant growth and fruit yield increased with increasing compost dosages. The results suggested that Champaka pineapple benefited from the association of A. bogorensis (strain 219) when grown under irrigation and with organic fertilizer.
Resumo:
Despite numerous studies reporting on organic consumer profiles, little is known on consumers motivations for buying local and organic products. More precisely, do consumers prefer local products because they want to support local producers or do environment and the question of food miles matter in their choice ? Besides, very little is known about organic consumers in developing countries, since most surveys are generally conducted in developed countries. Our purpose is to fill this double gap. By conducting qualitative surveys based on individual interviews in four developing countries (Brazil, Egypt, Uganda and China) and two European countries, France and Denmark, we plan to study consumers choice for organic products from supermarkets, farmers markets or local organic food network respectively. Products are selected to cover examples of imported organic products that compete with comparable products of local origin. First results from Brazil and France show that French consumers are more concerned by the environment than Brazilian consumers, but that most consumers in both samples are not concerned by food miles and their subsequent environmental impacts. Results also shed light on different patterns related to commitment of supporting small or local farmers, and suggest implications for policy makers.
Resumo:
2008
Resumo:
2016
Resumo:
ABSTRACT: The study of labile carbon fractions (LCF) provides an understanding of the behavior of soil organic matter (SOM) under different soil management systems and cover crops. The aim of this study was to assess the effect of different soil management systems with respect to tillage, cover crop and phosphate fertilization on the amount of the LCF of SOM. Treatments consisted of conventional tillage (CT) and no-tillage (NT) with millet as the cover crop and a no-tillage system with velvet bean at two phosphorus dosages. Soil samples were collected and analyzed for organic carbon (OC), C oxidizable by KMnO4 (C-KMnO4), particulate OC (POC), microbial biomass carbon and light SOM in the 0.0-0.05, 0.05-0.10 and 0.10-0.20 m soil layers. The Carbon Management Index (CMI) was calculated to evaluate the impacts of soil management treatments on the quality of the SOM. The different LCFs are sensitive to different soil management systems, and there are significant correlations between them. C-KMnO4 is considered the best indicator of OC carbon lability. In the soil surface layers, the CT reduced the carbon content in all of the labile fractions of the SOM. The use of phosphorus led to the accumulation of OC and carbon in the different soil fractions regardless of the tillage system or cover crop. The application of phosphate fertilizer improved the ability of the NTsystem to promote soil quality, as assessed by the CMI.
Resumo:
Coffea sp. is cultivated in large areas, using both conventional and organic management. However, information about the sustainability of these two management systems is still deficient. The objective of the present study was to evaluate the physical properties of soil cultivated with Conilon coffee (C. canephora) under organic and conventional management. Two areas cultivated with Conilon coffee (under organic and conventional management) and a fragment of Atlantic forest, used as a reference, were selected for the experiment. Soil granulometry, hydraulic conductivity, water retention curve, resistance to penetration, porosity, optimal hydric interval, and other physical characteristics were measured at depths of 0 to 10 and 10 to 20 cm. The data was submitted to multivariate and descriptive statistical analyses. Higher similarity was observed between the soil cultivated with Conilon coffee under organic management and the Atlantic forest soil. Soil resistance to penetration at 10, 30, 100, 500 and 1500 kPa, macro porosity, density and total porosity were the main physical properties that differentiated both management systems studied. The non-use of agricultural machinery and the addition of organic matter may be the main reasons for higher soil sustainability observed under organic management when compared with the conventional system.
Resumo:
Arbuscular mycorrhizal fungi (AMF), which is intrinsically present or may be introduced in soils by inoculation, is an example of natural and renewable resource to increase plant nutrient uptake. This kind of fungi produces structures (hyphae, arbuscles and sometimes vesicles) inside the plant root cortex. This mutualistic relationship promotes plant gains in terms of water and nutrient absorption (mainly phosphorus). Biochar can benefit plant interaction with AMF, however, it can contain potentially toxic compounds such as heavy metals and organic compounds (e.g. dioxins, furans and polycyclic aromatic hydrocarbons), depending on the feedstock and pyrolysis conditions, which may damage organisms. For these reasons, the present work will approach the impacts of biochar application on soil attributes, AMF-plant symbiosis and its responses in plant growth and phosphorus uptake. Eucalyptus biochar produced at high temperatures increases sorghum growth; symbiosis with AMF; and enhances spore germination. Enhanced plant growth in the presence of high temperature biochar and AMF is a response of root branching stimulated by an additive effect between biochar characteristics and root colonization. Biochar obtained at low temperature reduces AMF spore germination; however it does not affect plant growth and symbiosis in soil.