2 resultados para pest species
Resumo:
The genus Trichogramma Westwood (Hymenoptera: Trichogrammatidae) includes insect egg parasitoids that are widely used throughout the world as control agents of pest insects. The aim of this study was to identify the species of Trichogramma naturally associated with the eggs of lepidopteran pests of the following agricultural and horticultural crops: collards, Brassica oleracea L. (Brassicales: Brassicaceae); papaya, Carica papaya L. (Capparales: Caricaceae); tomato, Lycopersicon esculentum Mill. (Solanales: Solanaceae); cassava, Manihot esculenta Crantz (Malpighiales: Euphorbiaceae); banana, Musa sp. L. (Zingiberales: Musaceae); passion fruit, Passiflora sp. Degener (Malpighiales: Passifloraceae); sugarcane, Saccharum sp. L. (Poales: Poaceae); and corn (maize), Zea mays L. (Poales: Poaceae); and an invasive species (Sodom?s apple milkweed, Calotropis procera Aiton; Gentianales: Apocynaceae) in the semiarid region of Minas Gerais, Brazil. We report natural parasitism by Trichogramma in eggs of Agraulis vanillae vanillae (L.) (Lepidoptera: Nymphalidae), Antichloris eriphia F. (Lepidoptera: Arctiidae), Danaus sp. (L.) (Lepidoptera: Nymphalidae), Diatraea saccharalis F. (Lepidoptera: Crambidae), Erinnyis ello L. (Lepidopera: Sphingidae), and Protambulyx strigilis L. (Lepidopera: Sphingidae). In total, 2,242 specimens of Trichogramma were obtained, belonging to the species T. pretiosum Riley, T. manicobai Brun, Moraes & Soares, T. marandobai Brun, Moraes & Soares, and T. galloi Zucchi. These species of Trichogramma may be candidates for biological control programs of lepidopteran pests in the semiarid region of Minas Gerais and in other semiarid regions.
Resumo:
The GxE interaction only became widely discussed from evolutionary studies and evaluations of the causes of behavioral changes of species cultivated in environments. In the last 60 years, several methodologies for the study of adaptability and stability of genotypes in multiple environments trials were developed in order to assist the breeder's choice regarding which genotypes are more stable and which are the most suitable for the crops in the most diverse environments. The methods that use linear regression analysis were the first to be used in a general way by breeders, followed by multivariate analysis methods and mixed models. The need to identify the genetic and environmental causes that are behind the GxE interaction led to the development of new models that include the use of covariates and which can also include both multivariate methods and mixed modeling. However, further studies are needed to identify the causes of GxE interaction as well as for the more accurate measurement of its effects on phenotypic expression of varieties in competition trials carried out in genetic breeding programs.