2 resultados para non conventional secretion
Resumo:
Dichelops melacanthus was studied under controlled conditions (60 ± 10% RH and 14/10 h L/D photoperiod), and three constant temperatures (19, 25, and 31 ± 2 °C). Fresh pods of MON 87701 × MON 89788 soybeans and its near non-Bt isoline (A5547) were supplied to nymphs and adults. The biology of T. podisi was studied in the same controlled RH conditions, but only at the standard temperature of 25 ± 2°C. Overall, the development of D. melacanthus was better at higher temperatures, which accelerated the development of the stink bug without affecting adult biological parameters. No influence of Bt-soybeans on the biology of the pest was observed in any temperature studied, which shows that D. melacanthus is not affected by this transgenic soybean. The egg parasitoid T. podisi also was not harmed when it parasitized eggs of the pest fed with MON 87701 × MON 89788 soybeans, with similar results to those obtained in non-Bt isogenic soybeans. Thus, this study demonstrates that D. melacanthus is favored at high temperatures (31 ± 2 °C), and that neither did MON 87701 × MON 89788 soybean pods affect the development of the pest nor its parasitoid T. podisi.
Resumo:
Coffea sp. is cultivated in large areas, using both conventional and organic management. However, information about the sustainability of these two management systems is still deficient. The objective of the present study was to evaluate the physical properties of soil cultivated with Conilon coffee (C. canephora) under organic and conventional management. Two areas cultivated with Conilon coffee (under organic and conventional management) and a fragment of Atlantic forest, used as a reference, were selected for the experiment. Soil granulometry, hydraulic conductivity, water retention curve, resistance to penetration, porosity, optimal hydric interval, and other physical characteristics were measured at depths of 0 to 10 and 10 to 20 cm. The data was submitted to multivariate and descriptive statistical analyses. Higher similarity was observed between the soil cultivated with Conilon coffee under organic management and the Atlantic forest soil. Soil resistance to penetration at 10, 30, 100, 500 and 1500 kPa, macro porosity, density and total porosity were the main physical properties that differentiated both management systems studied. The non-use of agricultural machinery and the addition of organic matter may be the main reasons for higher soil sustainability observed under organic management when compared with the conventional system.