5 resultados para nested scalar convolutions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este comunicado descreve os procedimentos de coleta, processamento do líquido céfalo-raquidiano, para a extração de RNA genômico viral, e de detecção do vírus através da técnica de RT-nested PCR, potencial método de diagnóstico molecular da CAE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este comunicado descreve os procedimentos de coleta e processamento de líquido sinovial e sangue seguido pela extração de RNA genômico e, finalmente, o diagnóstico molecular do vírus pela técnica de RT-nested PCR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente comunicado descreve os procedimentos necessários para a coleta e processamento de amostras de sêmen de caprinos infectados pelo CAEV para posterior extração do RNA viral por meio de um método baseado em centrifugação em coluna de sílica. A avaliação da presença de RNA no sêmen será feita, diretamente, por meio da reação de RT-nested PCR, portencial método de diagnóstico molecular da CAE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important current problem in micrometeorology is the characterization of turbulence in the roughness sublayer (RSL), where most of the measurements above tall forests are made. There, scalar turbulent fluctuations display significant departures from the predictions of Monin?Obukhov similarity theory (MOST). In this work, we analyze turbulence data of virtual temperature, carbon dioxide, and water vapor in the RSL above an Amazonian forest (with a canopy height of 40&#8239;m), measured at 39.4 and 81.6&#8239;m above the ground under unstable conditions. We found that dimensionless statistics related to the rate of dissipation of turbulence kinetic energy (TKE) and the scalar variance display significant departures from MOST as expected, whereas the vertical velocity variance follows MOST much more closely. Much better agreement between the dimensionless statistics with the Obukhov similarity variable, however, was found for the subset of measurements made at a low zenith angle Z, in the range 0°&#8239;&#8201;<&#8201;&#8239;|Z|&#8239;&#8201;<&#8201;&#8239;20°. We conjecture that this improvement is due to the relationship between sunlight incidence and the ?activation?deactivation? of scalar sinks and sources vertically distributed in the forest. Finally, we evaluated the relaxation coefficient of relaxed eddy accumulation: it is also affected by zenith angle, with considerable improvement in the range 0°&#8239;&#8201;<&#8201;&#8239;|Z|&#8239;&#8201;<&#8201;&#8239;20°, and its values fall within the range reported in the literature for the unstable surface layer. In general, our results indicate the possibility of better stability-derived flux estimates for low zenith angle ranges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important current problem in micrometeorology is the characterization of turbulence in the roughness sublayer (RSL), where most of the measurements above tall forests are made. There, scalar turbulent fluctuations display significant departures from the predictions of Monin?Obukhov similarity theory (MOST). In this work, we analyze turbulence data of virtual temperature, carbon dioxide, and water vapor in the RSL above an Amazonian forest (with a canopy height of 40?m), measured at 39.4 and 81.6?m above the ground under unstable conditions. We found that dimensionless statistics related to the rate of dissipation of turbulence kinetic energy (TKE) and the scalar variance display significant departures from MOST as expected, whereas the vertical velocity variance follows MOST much more closely. Much better agreement between the dimensionless statistics with the Obukhov similarity variable, however, was found for the subset of measurements made at a low zenith angle Z, in the range 0°??<??|Z|??<??20°. We conjecture that this improvement is due to the relationship between sunlight incidence and the ?activation?deactivation? of scalar sinks and sources vertically distributed in the forest. Finally, we evaluated the relaxation coefficient of relaxed eddy accumulation: it is also affected by zenith angle, with considerable improvement in the range 0°??<??|Z|??<??20°, and its values fall within the range reported in the literature for the unstable surface layer. In general, our results indicate the possibility of better stability-derived flux estimates for low zenith angle ranges.