3 resultados para mixed-model assembly line
Resumo:
Forage peanut improvement for use in grass?legume mixtures is expected to have a great impact on the sustainability of Brazilian livestock production. Eighteen cloned Arachis spp. ecotypes were evaluated under clipping in a Brazilian Cerrado region and results analysed using a mixed model methodology. The objective was to estimate genetic and phenotypic parameters and to select the best ecotypes based on selection index applied on their predicted genotypic value. The traits of total dry-matter (DM) and leaf DM yield presented moderate (0_30 < h2g < 0_50) to high (>0_50) broad-sense heritability, in contrast to the low genetic variability in nutritional quality-associated traits. Ecotypes of Arachis spp. contained average crude protein concentrations of 224 g kg _1 DM in leaves and 138 g kg _1 DM in stems, supporting the potential role of these species to overcome the low protein content in Cerrado pastures. The correlations between yield traits and traits associated with low nutritional value in leaves were consistently significant and positive. Genetic correlations among all the yield traits evaluated during the rainy or dry seasons were significant and positive. The ecotypes were ranked based on selection index. The next step is to validate long-term selection of grass?Arachis in combination with pastures under competition and adjusted grazing in the Cerrado region.
Resumo:
Feed efficiency and carcass characteristics are late-measured traits. The detection of molecular markers associated with them can help breeding programs to select animals early in life, and to predict breeding values with high accuracy. The objective of this study was to identify polymorphisms in the functional and positional candidate gene NEUROD1 (neurogenic differentiation 1), and investigate their associations with production traits in reference families of Nelore cattle. A total of 585 steers were used, from 34 sires chosen to represent the variability of this breed. By sequencing 14 animals with extreme residual feed intake (RFI) values, seven single nucleotide polymorphisms (SNPs) in NEUROD1 were identified. The investigation of marker effects on the target traits RFI, backfat thickness (BFT), ribeye area (REA), average body weight (ABW), and metabolic body weight (MBW) was performed with a mixed model using the restricted maximum likelihood method. SNP1062, which changes cytosine for guanine, had no significant association with RFI or REA. However, we found an additive effect on ABW (P ≤ 0.05) and MBW (P ≤ 0.05), with an estimated allele substitution effect of -1.59 and -0.93 kg0.75, respectively. A dominant effect of this SNP for BFT was also found (P ≤ 0.010). Our results are the first that identify NEUROD1 as a candidate that affects BFT, ABW, and MBW. Once confirmed, the inclusion of this SNP in dense panels may improve the accuracy of genomic selection for these traits in Nelore beef cattle as this SNP is not currently represented on SNP chips.
Resumo:
The myogenic differentiation 1 gene (MYOD1) has a key role in skeletal muscle differentiation and composition through its regulation of the expression of several muscle-specific genes. We first used a general linear mixed model approach to evaluate the association of MYOD1 expression levels on individual beef tenderness phenotypes. MYOD1 mRNA levels measured by quantitative polymerase chain reactions in 136 Nelore steers were significantly associated (P ? 0.01) with Warner?Bratzler shear force, measured on the longissimus dorsi muscle after 7 and 14 days of beef aging. Transcript abundance for the muscle regulatory gene MYOD1 was lower in animals with more tender beef. We also performed a coexpression network analysis using whole transcriptome sequence data generated from 30 samples of longissimus muscle tissue to identify genes that are potentially regulated by MYOD1. The effect of MYOD1 gene expression on beef tenderness may emerge from its function as an activator of muscle-specific gene transcription such as for the serum response factor (C-fos serum response element-binding transcription factor) gene (SRF), which determines muscle tissue development, composition, growth and maturation.