6 resultados para maize production areas of highly variable rainfall
Resumo:
2008
Resumo:
Common bean production in Goiás, Brazil is concentrated in the same geographic area, but spread acrossthree distinct growing seasons, namely, wet, dry and winter. In the wet and dry seasons, common beansare grown under rainfed conditions, whereas the winter sowing is fully irrigated. The conventional breed-ing program performs all varietal selection stages solely in the winter season, with rainfed environmentsbeing incorporated in the breeding scheme only through the multi environment trials (METs) wherebasically only yield is recorded. As yield is the result of many interacting processes, it is challengingto determine the events (abiotic or biotic) associated with yield reduction in the rainfed environments(wet and dry seasons). To improve our understanding of rainfed dry bean production so as to produceinformation that can assist breeders in their efforts to develop stress-tolerant, high-yielding germplasm,we characterized environments by integrating weather, soil, crop and management factors using cropsimulation models. Crop simulations based on two commonly grown cultivars (Pérola and BRS Radi-ante) and statistical analyses of simulated yield suggest that both rainfed seasons, wet and dry, can bedivided in two groups of environments: highly favorable environment and favorable environment. Forthe wet and dry seasons, the highly favorable environment represents 44% and 58% of production area,respectively. Across all rainfed environment groups, terminal and/or reproductive drought stress occursin roughly one fourth of the seasons (23.9% for Pérola and 24.7% for Radiante), with drought being mostlimiting in the favorable environment group in the dry TPE. Based on our results, we argue that eventhough drought-tailoring might not be warranted, the common bean breeding program should adapttheir selection practices to the range of stresses occurring in the rainfed TPEs to select genotypes moresuitable for these environments.
Resumo:
Estudou-se atraves de um experimento em blocos ao acaso, os efeitos de quatro niveis de nitrogenio, em diferentes condicoes de umidade, sobre os estagios de crescimento, embonecamento, formacao de graos e prdutividade do milho (Zea mays L.) e as relacoes entre a produtividade e os tres primeiros estagios. Os fatores da resposta de producaobaseados na equacao de Doorenbos e Kassam variaram acentuadamente, nao so com os diferentes estatios de crescimento, mas tambem com diferentes niveis de nitrogenio e os diferentes niveis de agua. Assim, esta equacao nao pareceu ser valida para explicar a resposta de produtividade a niveis de agua. Sugeriu-se um equacao linear modificada. Nesta equacao, a intercessao K1 e inclinacao K2 sao os fatores da resposta de producao. Estes fatores para a cultura do milho foram desenvolvidos para todos os quatro estagios de crescimento e nveis de nitrogenio. Pode-se obter uma eficiencia media do uso de agua, em termos de produtividade, de, aproximadamente, 57,5 kg/ha-cm de agua, sendo, contudo, pequeno o incremento, em face dos niveis crescentes de nitrogenio aplicado ate 120 kg/ha. Os coeficientes de cutura (Kc) calculados estao muito abaixo da estimativa da FAO, para todos os niveis de nitrogenio. Por essa razao, deve haver consideravel economica de agua se estes coeficientes forem usados em lugar da estimativa da FAO. A informacao mostradapode imediatamente ser utilizada para turno de irrigacao e para projetos de irrigacao suplementar planejado para as condicoes doe Nordeste do Brasil.
Resumo:
2015
Resumo:
Wool production and reproductive performance components of similar genotypes, brought from distinct production areas, were evaluated during five years trial at similar environments, such as, joining season and stocking rate on winter improved pasture. The least squares means revealed that the origin (breed) effect concentrated upon the Corriedale ewes wool production, whereas in Romney females it affected the reproductive performance.
Resumo:
Introduction: Brazil, is one of the main agricultural producers in the world ranking 1st in the production of sugarcane, coffee and oranges. It is also 2nd as world producer of soybeans and a leader in the harvested yields of many other crops. The annual consumption of mineral fertilizers exceeds 20 million mt, 30% of which corresponds to potash fertilizers (ANDA, 2006). From this statistic it may be supposed that fertilizer application in Brazil is rather high, compared with many other countries. However, even if it is assumed that only one fourth of this enormous 8.5 million km2 territory is used for agriculture, average levels of fertilizer application per hectare of arable land are not high enough for sustainable production. One of the major constraints is the relatively low natural fertility status of the soils which contain excessive Fe and Al oxides. Agriculture is also often practised on sandy soils so that the heavy rainfall causes large losses of nutrients through leaching. In general, nutrient removal by crops such as sugarcane and tropical fruits is much more than the average nutrient application via fertilization, especially in regions with a long history of agricultural production. In the recently developed areas, especially in the Cerrado (Brazilian savanna) where agriculture has expanded since 1980, soils are even poorer than in the "old" agricultural regions, and high costs of mineral fertilizers have become a significant input factor in determining soybean, maize and cotton planting. The consumption of mineral fertilizers throughout Brazil is very uneven. According to the 1995/96 Agricultural Census, only in eight of the total of 26 Brazilian states, were 50 per cent or more of the farms treated "systematically" with mineral fertilizers; in many states it was less than 25 per cent, and in five states even less than 12 per cent (Brazilian Institute for Geography and Statistics; Censo Agropecuario1995/96, Instituto Brazileiro de Geografia e Estadistica; IBGE, www.ibge.gov.br). The geographical application distribution pattern of mineral fertilizers may be considered as an important field of research. Understanding geographical disparities in fertilization level requires a complex approach. This includes evaluation of the availability of nutrients in the soil (and related soil properties e.g. CEC and texture), the input of nutrients with fertilizer application, and the removal of nutrients by harvested yields. When all these data are compiled, it is possible to evaluate the balance of particular nutrients for certain areas, and make conclusions as to where agricultural practices should be optimized. This kind of research is somewhat complicated, because it relies on completely different sources of data, usually from incomparable data sources, e.g. soil characteristics attributed to soil type areas, in contrast to yields by administrative regions, or farms. A priority tool in this case is the Geographical Information System (GIS), which enables attribution of data from different fields to the same territorial units, and makes possible integration of these data in an "inputoutput" model, where "input" is the natural availability of a nutrient in the soil plus fertilization, and "output" export of the same nutrient with the removed harvested yield.