1 resultado para large spatial scale
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (19)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (4)
- Archive of European Integration (4)
- Aston University Research Archive (19)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (24)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (103)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CentAUR: Central Archive University of Reading - UK (146)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (16)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (5)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (18)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (21)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- Ecology and Society (2)
- Galway Mayo Institute of Technology, Ireland (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (14)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (4)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (14)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (62)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositorio de la Universidad de Cuenca (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (64)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (15)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (32)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (1)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universita di Parma (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (66)
- Université de Montréal, Canada (10)
- University of Connecticut - USA (1)
- University of Michigan (21)
- University of Queensland eSpace - Australia (41)
- University of Southampton, United Kingdom (1)
- University of Washington (5)
Resumo:
Knowledge of the geographical distribution of timber tree species in the Amazon is still scarce. This is especially true at the local level, thereby limiting natural resource management actions. Forest inventories are key sources of information on the occurrence of such species. However, areas with approved forest management plans are mostly located near access roads and the main industrial centers. The present study aimed to assess the spatial scale effects of forest inventories used as sources of occurrence data in the interpolation of potential species distribution models. The occurrence data of a group of six forest tree species were divided into four geographical areas during the modeling process. Several sampling schemes were then tested applying the maximum entropy algorithm, using the following predictor variables: elevation, slope, exposure, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). The results revealed that using occurrence data from only one geographical area with unique environmental characteristics increased both model overfitting to input data and omission error rates. The use of a diagonal systematic sampling scheme and lower threshold values led to improved model performance. Forest inventories may be used to predict areas with a high probability of species occurrence, provided they are located in forest management plan regions representative of the environmental range of the model projection area.