6 resultados para height of instrument
Resumo:
Climate variations over the year and plant density tend to strongly affect the agronomic performance of carrot crops. Thus, the objective of this work was to evaluate the performance of the cultivar Brasilia in crops under mild (winter) and high (summer) temperatures. An experiment was conducted from May 2011 to February 2012, using a randomized block design and treatments arranged in split plot, with three replications. The plots consisted of planting seasons (winter and summer) and the subplots of plant spacing (4, 6, 8 and 10 cm). The height of plants presented a linear decrease, from 53.4 to 51.0 cm, with an increase in spacing in summer planting, while in winter the greatest height (50.7 cm) was obtained with spacing of 8.0 cm between plants. The lowest commercial yields were found in summer crops and with the widest spacing between plants. The smallest spacing between plants (4 cm) had yields of 45.9 Mg ha -1in summer and of 63.1 Mg ha-1 in winter crops. The winter planting had higher fresh root weight (89.9 g root - 1 ) compared to the summer (81.4 g root - 1 ), reaching higher weight with increasing plant spacing. Higher yields are achieved with plant spacing of 4 cm during winter. The carrot can be grown throughout the year in the Submiddle of the São Francisco Valley.
Resumo:
An important current problem in micrometeorology is the characterization of turbulence in the roughness sublayer (RSL), where most of the measurements above tall forests are made. There, scalar turbulent fluctuations display significant departures from the predictions of Monin?Obukhov similarity theory (MOST). In this work, we analyze turbulence data of virtual temperature, carbon dioxide, and water vapor in the RSL above an Amazonian forest (with a canopy height of 40 m), measured at 39.4 and 81.6 m above the ground under unstable conditions. We found that dimensionless statistics related to the rate of dissipation of turbulence kinetic energy (TKE) and the scalar variance display significant departures from MOST as expected, whereas the vertical velocity variance follows MOST much more closely. Much better agreement between the dimensionless statistics with the Obukhov similarity variable, however, was found for the subset of measurements made at a low zenith angle Z, in the range 0° < |Z| < 20°. We conjecture that this improvement is due to the relationship between sunlight incidence and the ?activation?deactivation? of scalar sinks and sources vertically distributed in the forest. Finally, we evaluated the relaxation coefficient of relaxed eddy accumulation: it is also affected by zenith angle, with considerable improvement in the range 0° < |Z| < 20°, and its values fall within the range reported in the literature for the unstable surface layer. In general, our results indicate the possibility of better stability-derived flux estimates for low zenith angle ranges.
Resumo:
Estimating with greater precision and accuracy the height of plants has been a challenge for the scientific community. The objective this study is to evaluate the spatial variation of tree heights at different spatial scales in areas of the city of Recife, Brazil, using LiDAR remote sensing data. The LiDAR data were processed in the QT Modeler (Quick Terrain Modeler v. 8.0.2) software from Applied Imagery. The TreeVaW software was utilized to estimate the heights and crown diameters of trees. The results obtained for tree height were consistent with field measurements.
Resumo:
The obtaining of a compact plant, with less vigor and high productivity, equivalent to a conventional plant, constitutes a strong tendency in the current horticulture, aiming at a raising of the fruit production at the same planted area. One of the techniques that have had success nowadays is the interstem use. This study was developed in a commercial orchard of Randon Agro Silvo Pastoril S.A. (RASIP), located in the Rio Grande do Sul state, Brazil. The purpose of this work was to evaluate the vegetative and productive development of apple trees of 'Imperial Gala' with different lengths of EM-9 interstem. The treatments consisted of five interstem lengths: 10, 15, 20, 25, 30 cm. In the seventh year of implantation the following parameters were evaluated: the height of the plant, the diameter of the 'Imperial Gala' 5 cm above the second graft point, the volume of the tree-head (height, width and length), the number of bud per branch, and the number of fruits per lineal centimeter of branch. Through this study it could be concluded that the greater interstem (30 cm) presented better indices with relation of vigor control. However, the number of fruits per lineal centimeter of branch with the interstem of 10 cm offered only significant superiority, when compared with the interstem of 30 cm. Using interstem technique allows to gather the benefits of the rootstock 'Marubakaido' and to control excessive vigour with the interstem EM-9.
Resumo:
An important current problem in micrometeorology is the characterization of turbulence in the roughness sublayer (RSL), where most of the measurements above tall forests are made. There, scalar turbulent fluctuations display significant departures from the predictions of Monin?Obukhov similarity theory (MOST). In this work, we analyze turbulence data of virtual temperature, carbon dioxide, and water vapor in the RSL above an Amazonian forest (with a canopy height of 40?m), measured at 39.4 and 81.6?m above the ground under unstable conditions. We found that dimensionless statistics related to the rate of dissipation of turbulence kinetic energy (TKE) and the scalar variance display significant departures from MOST as expected, whereas the vertical velocity variance follows MOST much more closely. Much better agreement between the dimensionless statistics with the Obukhov similarity variable, however, was found for the subset of measurements made at a low zenith angle Z, in the range 0°???|Z|???20°. We conjecture that this improvement is due to the relationship between sunlight incidence and the ?activation?deactivation? of scalar sinks and sources vertically distributed in the forest. Finally, we evaluated the relaxation coefficient of relaxed eddy accumulation: it is also affected by zenith angle, with considerable improvement in the range 0°???|Z|???20°, and its values fall within the range reported in the literature for the unstable surface layer. In general, our results indicate the possibility of better stability-derived flux estimates for low zenith angle ranges.
Resumo:
Nitrogen fertilization from biological source is an uncommon practice for peanut growers due to the limited results, mainly in environments with water restriction. In this study, the response of a commercial Bradyrhizobium was evaluated on the nodulation and production of peanuts grown in sandy and medium textured soils. Two experiments using different soils were carried out in the field during the dry season, in Campina Grande, Paraíba State, Brazil. Three peanut genotypes were submitted to the following treatments: 1-no nitrogen fertilization (control), 2- chemical fertilization (ammonium sulfate) and 3- inoculation with Bradyrhizobium [commercial strain BR 1405 (SEMIA 6144)]. A completely randomized 3x3 factorial design was adopted with five repetitions for both experiments. The evaluates variables were: height of the main stem, number of nodes/plant, root length, root dry weight, weight of pods/plant and number of pods/plant. In addition, gas exchanges were estimated using IRGA apparatus. Both genotypes (BRS Havana and L7 Bege) were benefited in relation to production due to an inoculation with SEMIA 6144. No physiological response was verified in genotypes or N-treatments to gas exchange, excepting for the Ci/Ca ratio in the medium textured soil experiment. BRS Havana showed low Ci/Ca ratio in Bradyrhizobium treatment, indicating that SEMIA 6144 improved the plants photosynthetic efficiency.