4 resultados para elastic–viscoplastic soil model
Resumo:
The paper presents a simple method of irrigation scheduling using ICSWAB model for dry land crops. The main inputs to this approache are daily precipitation or irrigation amounts and open pan evaporation (US class 'A' pan-mesh covered). The fixed cumulative evapotranspiration procedure is better than fixed days or fixed percentage soil moisture procedures of irrigation scheduling. Fixed days procedures could be reasonably applied during nonrainy season.
Spatial variability of satured soil hydraulic conductivity in the region of Araguaia River - Brazil.
Resumo:
This study evaluates the spatial variability of saturated hydraulic conductivity in the soil in an area of 51,850 ha at the headwaters of the Araguaia River MT/GO. This area is highly vulnerable because it is a location of recharging through natural water infiltration of the Guarani Aquifer System and an area of intense increases in agriculture since its adoption by growers in the last 30 years. Soil samples were collected at 383 points, geographically located by GPS. The samples were collected from depths of 0 - 20 cm and 60 - 80 cm. Exploratory statistics and box-plot were used in the descriptive analysis and semivariogram were constructed to determine the spatial model. The exploratory analysis showed that the mean hydraulic conductivity in the superficial layer was less than at the level of 60-80 cm; however, the greatest variability evaluated with a coefficient of variation also was from this layer. Data tended towards a normal distribution. These results can be explained by the greater soil compaction in the superficial layer. The semivariogram models, adjusted for the two layers, were exponential and demonstrated moderate and strong dependence, with ranges of 5000 and 3000 utm respectively. It was concluded that soil use is influencing the spatial distribution model of the hydraulic conductivity in the region.
Resumo:
The Simple Algorithm for Evapotranspiration Retrieving (SAFER) was used to estimate biophysical parameters and theenergy balance components in two different pasture experimental areas, in the São Paulo state, Brazil. The experimentalpastures consist in six rotational (RGS) and three continuous grazing systems (CGS) paddocks. Landsat-8 images from2013 and 2015 dry and rainy seasons were used, as these presented similar hydrological cycle, with 1,600 mm and 1,613mm of annual precipitation, resulting in 19 cloud-free images. Bands 1 to 7 and thermal bands 10 and 11 were used withweather data from a station located nearthe experimental area. NDVI, biomass, evapotranspiration and latent heat flux(λE) temporal values statistically differ CGS from RGS areas. Grazing systems influences the energy partition and theseresults indicate that RGS benefits biomass production, evapotranspiration and the microclimate, due higher LE values.SAFER is a feasible tool to estimate biophysical parameters and energy balance components in pasture and has potentialto discriminate continuous and rotation grazing systems in a temporal analysis.
Resumo:
Abstract: The objectives of this study were to evaluate the combined effects of soil bioticand abiotic factors on the incidence of Fusarium corn stalk rot, during four annual incorporations of two typesofsewagesludge intosoil ina 5-years field assay under tropical conditions and topredict the effectsof these variables on the disease. For each type of sewage sludge, the following treatments were included: control with mineral fertilization recommended for corn; control without fertilization; sewage sludge based on the nitrogen concentration that provided the same amount of nitrogen as in the mineral fertilizer treatment; and sewage sludge that provided two, four and eight times the nitrogen concentration recommended for corn. Increasing dosages of both types of sewage sludge incorporated into soil resulted in increased corn stalk rot incidence, being negatively correlated with corn yield. A global analysis highlighted the effect of the year of the experiment, followed by the sewage sludge dosages. The type of sewage sludge did not affect the disease incidence. Amultiple logistic model using a stepwise procedure was fitted based on the selection of a model that included the three explanatory parameters for disease incidence: electrical conductivity, magnesium and Fusarium population. In the selected model, the probability of higher disease incidence increased with an increase of these three explanatory parameters. When the explanatory parameters were compared, electrical conductivity presented a dominant effect and was the main variable to predict the probability distribution curves of Fusarium corn stalk rot, after sewage sludge application into the soil.