4 resultados para classificação de imagens
Resumo:
O Projeto Indicação de Procedência Campanha coordenado pela Embrapa Uva e Vinho é um estudo multidisciplinar cujo foco é a caracterização da área da indicação geográfica vitivinícola, limitada a oeste pela Argentina, a sul-sudoeste pelo Uruguai, abrangendo grande parte da ?Metade Sul? do Estado do Rio Grande do Sul. A viticultura ocorre em polos produtores sob condições de uso da terra diversos e distantes entre si dentro da região. Então, foram definidos nove setores de ocorrência de vinhedos, onde foi testado o método de classificação digital de imagem (PDI). A escolha da setorização para emprego de PDI se baseia na premissa de que quanto menor a região melhor seria a identificação das classes de uso por uma imagem de satélite com melhor resolução possível, propiciando qualidade maior de classificação.
Resumo:
A degradação das pastagens pode ser definida como um processo evolutivo de perda de vigor, produtividade e capacidade de recuperação natural, e é atualmente um dos maiores problemas para a pecuária brasileira. Estudos recentes com imagens de satélites de sensoriamento remoto apresentam resultados promissores para identificar e mapear diferentes níveis de degradação em pastagens. Estas imagens também permitem monitor ao longo dos anos o processo de degradação em escala local ou regional. O objetivo do presente estudo consiste em avaliar o uso de imagens fusionadas dos sensores HRC e CCD do satélite CBERS-2B, para identificar e caracterizar áreas com pastagens degradadas nos municípios de Corguinho e Rio Negro no Estado de Mato Grosso do Sul. As imagens foram processadas utilizando o aplicativo SPRING. A classificação foi baseada na segmentação, no MAXVER e na Bhattacharya gerando um mapa temático das áreas de pastagens degradadas na escala de 1:50.000.
Resumo:
O presente estudo teve como objetivo comparar a eficiência dos dados dos sensores Aster e ETM+/Landsat 7 na classificação do uso e cobertura da terra, com ênfase nos níveis de degradação das pastagens na Zona da Mata Mineira, através da utilização de redes neurais artificiais. Foram testadas três composições de uma imagem do sensor Aster e uma do ETM+/Landsat 7, para definição das melhores feições discriminantes para o classificador. As classes de uso e cobertura consideradas foram: floresta, café, área urbana/solo exposto e três níveis de degradação das pastagens (moderado, forte e muito forte). Utilizou-se o simulador de redes neurais Java Neural Network Simulator e o algoritmo empregado foi o back-propagation. Dentre as composições de imagens testadas o melhor resultado foi alcançado com a utilização das 9 bandas do Aster (30m) como variáveis discriminantes, que também permitiu uma melhor discriminação dos níveis de degradação das pastagens considerados. Este resultado é atribuído à melhor resolução espectral desta composição de imagem quando comparada às demais. Dentre as classes consideradas, a pastagem no nível de degradação muito forte foi a que apresentou o maior erro de classificação, em todas as composições, sendo bastante confundida com a pastagem no nível de degradação forte.
Resumo:
Doze imagens Landsat 8 foram usadas em conjunto com uma rede de onze de estações agrometeorológicas para a modelagem em larga escala de indicadores do balanço hídrico nos agrosecossistemas da bacia hidrográfica do Submédio São Francisco, compostos por vegetação natural e culturas irrigadas. O algoritmo SAFER foi usado para a obtenção da evapotranspiração (ET), a qual foi usada em conjunto com dados de precipitação (P) interpolados. Para a classificação da vegetação e caracterização dos indicadores, o algoritmo SUREAL foi aplicado na determinação da resistência da superfície (rs) sendo valores limites de rs usados na separação em culturas agrícolas e espécies da Caatinga. Nas condições naturais mais úmidas do início do ano, as taxas de evapotranspiração na vegetação natural foram em torno de 30% daquelas para culturas irrigadas, enquanto que nas mais secas estas ficaram em torno de 6%. Considerando-se todo o ano, as culturas irrigadas consumiram cinco vezes mais água que as espécies da Caatinga, uma quantidade extra de 870 mm ano-1. Maiores cautelas com relação ao manejo de irrigação devem ser tomadas no período climaticamente mais seco do ano, devido ao aumento da retirada da água do Rio São Francisco, criando maiores possibilidades de conflitos entre os setores agrícolas e outros usuários da água.