4 resultados para análise exploratória
Resumo:
Visando oferecer subsídios para a avaliação do Plano Territorial de Desenvolvimento Rural Sustentável do Ministério do Desenvolvimento Agrário este trabalho teve como objetivo a aplicação da análise de componentes principais, da análise de agrupamentos pelo método hierárquico aglomerativo e da rede neural do tipo Mapa Auto-Organizável de Kohonen na análise exploratória de resultados de simulações sociais computacionais do sistema socioterritorial ?Território Rural Sul "sergipano?. A metodologia basea-se na Sociologia da Ação Organizada e no método Soclab. As análises estatísticas mostraram que o sistema socioterritorial em questão tem estrutura simples e determinística, ou seja, apresenta um jogo social cooperativo com forte tendência à estabilidade mesmo com situações de interesses divergentes. A análise neural permitiu a caracterização das situações atípicas quando ocorrem a estabilidade do sistema social.
Resumo:
O conhecimento dos atributos químicos dos solos é um fator de grande relevância, visando a utilização racional de corretivos e fertilizante. Assim, neste trabalho estão sendo caracterizados ambientes da região Norte, Noroeste e Serrana do Estado do Rio de Janeiro, para fins de estimativas de carbono orgânico (Corg), capacidade de troca catiônica (CTC), pH em água, alumínio trocável (Al+3), nitrogênio, saturação por bases (V%) e fósforo. Tendo como objetivo específico à análise exploratória dos dados de fertilidade do solo das três regiões mais produtivas do Estado do Rio de Janeiro. Neste projeto foram usados os dados de solos sistematizados pela Embrapa Solos (Santos et al., 2005). Os solos analisados apresentam baixo pH em água e altos teores em Al+3, bem como baixas concentrações de P, N e C orgânico. Os valores de CTC e V (%) foram considerados bons para a fertilidade do solo. A análise exploratória dos dados identificou outliers e valores extremos, pela análise do sumário estatístico e dos gráficos box-plot das variáveis. A retirada destes últimos melhorou muito a consistência do conjunto remanescente, o que permite antever uma melhor qualidade dos resultados de interpolações por krigagem a serem realizadas e o próprio mapeamento digital da fertilidade, de acordo com McBratney et al. (2003). A análise exploratória mostrou-se útil para as próximas fases de mapeamento digital de solo-paisagem e a recomendação de adubação a ser proposta.
Resumo:
O objetivo deste trabalho foi predizer a fertilidade do solo no polo agrícola do Estado do Rio de Janeiro, por meio da modelagem solo x paisagem. A área de estudo compreendeu as regiões mais produtivas do Estado do Rio de Janeiro: Norte, Noroeste e Serrana. Características químicas do solo ? pH em H2O e capacidade de troca catiônica (CTC) ? e ambientais ? elevação, plano de curvatura, perfil de curvatura, índice de umidade, aspecto e declividade do terreno, além de tipos de solos, índice de vegetação normalizada (NDVI), imagens Landsat 7 e litologia ? foram utilizadas como variáveis preditoras. A análise exploratória dos dados identificou valores extremos, os quais foram expurgados, na preparação para a análise por regressão linear múltipla (RLM). Aos resultados da RLM, foram adicionados os resultados de krigagem dos resíduos da regressão, com uma técnica de mapeamento digital de solos (MDS) denominada regressão-krigagem. Na região Serrana, as variáveis ambientais explicaram as variáveis químicas. A variável NDVI foi importante nas três regiões, o que evidencia a importância da cobertura vegetal para a predição da fertilidade do solo. Em geral, os solos analisados apresentaram baixo pH. Os valores de CTC, nas regiões estudadas, estão dentro do intervalo considerado bom para a fertilidade do solo.
Resumo:
Espécies forrageiras adaptadas às condições semiáridas são uma alternativa para reduzir os impactos negativos na cadeia produtiva de ruminantes da região Nordeste brasileira devido à sazonalidade na oferta de forragem, além de reduzir custo com o fornecimento de alimentos concentrados. Dentre as espécies, a vagem de algaroba (Prosopis juliflora SW D.C.) e palma forrageira (Opuntia e Nopalea) ganham destaque por tolerarem o déficit hídrico e produzirem em períodos onde a oferta de forragem está reduzida, além de apresentam bom valor nutricional e serem bem aceitas pelos animais. Porém, devido à variação na sua composição, seu uso na alimentação animal exige o conhecimento profundo da sua composição para a elaboração de dietas balanceadas. No entanto, devido ao custo e tempo para análise, os produtores não fazem uso da prática de análise da composição químico-bromatológica dos alimentos. Por isto, a espectroscopia de reflectância no infravermelho próximo (NIRS) representa uma importante alternativa aos métodos tradicionais. Objetivou-se com este estudo desenvolver e validar modelos de predição da composição bromatológica de vagem de algaroba e palma forrageira baseados em espectroscopia NIRS, escaneadas em dois modelos de equipamentos e com diferentes processamentos da amostra. Foram coletadas amostras de vagem de algaroba nos estados do Ceará, Bahia, Paraíba e Pernambuco, e amostras de palma forrageira nos estados do Ceará, Paraíba e Pernambuco, frescas (in natura) ou pré-secas e moídas. Para obtenção dos espectros utilizaram-se dois equipamentos NIR, Perten DA 7250 e FOSS 5000. Inicialmente os alimentos foram escaneados in natura em aparelho do modelo Perten, e, com o auxílio do software The Unscrambler 10.2 foi selecionado um grupo de amostras para o banco de calibração. As amostras selecionadas foram secas e moídas, e escaneadas novamente em equipamentos Perten e FOSS. Os valores dos parâmetros de referência foram obtidos por meio de metodologias tradicionalmente aplicadas em laboratório de nutrição animal para matéria seca (MS), matéria mineral (MM), matéria orgânica (MO), proteína bruta (PB), estrato etéreo (EE), fibra solúvel em detergente neutro (FDN), fibra solúvel em detergente ácido (FDA), hemicelulose (HEM) e digestibilidade in vitro da matéria seca (DIVMS). O desempenho dos modelos foi avaliado de acordo com os erros médios de calibração (RMSEC) e validação (RMSECV), coeficiente de determinação (R2 ) e da relação de desempenho de desvio dos modelos (RPD). A análise exploratória dos dados, por meio de tratamentos espectrais e análise de componentes principais (PCA), demonstraram que os bancos de dados eram similares entre si, dando segurança de desenvolver os modelos com todas as amostras selecionadas em um único modelo para cada alimento, algaroba e palma. Na avaliação dos resultados de referência, observou-se que a variação dos resultados para cada parâmetro corroboraram com os descritos na literatura. No desempenho dos modelos, aqueles desenvolvidos com pré-processamento da amostra (pré-secagem e moagem) se mostraram mais robustos do que aqueles construídos com amostras in natura. O aparelho NIRS Perten apresentou desempenho semelhante ao equipamento FOSS, apesar desse último cobrir uma faixa espectral maior e com intervalos de leituras menores. A técnica NIR, associada ao método de calibração multivariada de regressão por meio de quadrados mínimos (PLS), mostrou-se confiável para prever a composição químico-bromatológica de vagem de algaroba e da palma forrageira. Abstract: Forage species adapted to semi-arid conditions are an alternative to reduce the negative impacts in the feed supply for ruminants in the Brazilian Northeast region, due to seasonality in forage availability, as well as in the reducing of cost by providing concentrated feedstuffs. Among the species, mesquite pods (Prosopis juliflora SW DC) and spineless cactus (Opuntia and Nopalea) are highlighted for tolerating the drought and producion in periods where the forage is scarce, and have high nutritional value and also are well accepted by the animals. However, its use in animal diets requires a knowledge about its composition to prepare balanced diets. However, farmers usually do not use feed composition analysis, because their high cost and time-consuming. Thus, the Near Infrared Reflectance Spectroscopy in the (NIRS) is an important alternative to traditional methods. The objective of this study to develop and validate predictive models of the chemical composition of mesquite pods and spineless cactus-based NIRS spectroscopy, scanned in two different spectrometers and sample processing. Mesquite pods samples were collected in the states of Ceará, Bahia, Paraiba and Pernambuco, and samples of forage cactus in the states of Ceará, Paraíba and Pernambuco. In order to obtain the spectra, it was used two NIR equipment: Perten DA 7250 and FOSS 5000. sSpectra of samples were initially obtained fresh (as received) using Perten instrument, and with The Unscrambler software 10.2, a group of subsamples was selected to model development, keeping out redundant ones. The selected samples were dried and ground, and scanned again in both Perten and FOSS instruments. The values of the reference analysis were obtained by methods traditionally applied in animal nutrition laboratory to dry matter (DM), mineral matter (MM), organic matter (OM), crude protein (CP), ether extract (EE), soluble neutral detergent fiber (NDF), soluble acid detergent fiber (ADF), hemicellulose ( HEM) and in vitro digestibility of dry matter (DIVDM). The performance of the models was evaluated according to the Root Mean Square Error of Calibration (RMSEC) and cross-validation (RMSECV), coefficient of determination (R2 ) and the deviation of Ratio of performance Deviation of the models (RPD). Exploratory data analysis through spectral treatments and principal component analysis (PCA), showed that the databases were similar to each other, and may be treated asa single model for each feed - mesquite pods and cactus. Evaluating the reference results, it was observed that the variation were similar to those reported in the literature. Comparing the preprocessing of samples, the performance ofthose developed with preprocessing (dried and ground) of the sample were more robust than those built with fresh samples. The NIRS Perten device performance similar to FOSS equipment, although the latter cover a larger spectral range and with lower readings intervals. NIR technology associate do multivariate techniques is reliable to predict the bromatological composition of mesquite pods and cactus.