2 resultados para análise de regressão múltipla


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muitos experimentos tem sido analisados por métodos estatísticos inadequados. O uso não criterioso destes métodos, sem o devido cuidado ou sem considerar outras possibilidades, pode reduzir o valor das discussões, conclusões e o próprio valor da pesquisa. Há uma grande gama de tipos possíveis de abordagem estatística dos dados de pesquisa, cada qual atingindo uma finalidade. Por isso, o procedimento estatístico deve ser escolhido criteriosamente. Se o objetivo de um trabalho e estimar a magnitude de um efeito, então a analise usada deve estimá-la: não basta neste caso, apenas explicar qual dos resultados diferiram significativamente. Não obstante, se o objetivo da pesquisa é determinar um ponto, então a análise deve faze-lo. Neste caso, não e suficiente verificar somente o comportamento dos dados. A escolha de um modelo de regressão e uma ponderação na qual deve ser considerados, a adequação ao fenômeno estudado, o ajuste matemático obtido e a sua aplicabilidade. As propriedades do modelo escolhido devem ser justificáveis, tanto logicamente quanto biologicamente. Portanto, a análise deve ser sensata, lógica e apropriada as questões que procura-se responder.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O objetivo deste trabalho foi predizer a fertilidade do solo no polo agrícola do Estado do Rio de Janeiro, por meio da modelagem solo x paisagem. A área de estudo compreendeu as regiões mais produtivas do Estado do Rio de Janeiro: Norte, Noroeste e Serrana. Características químicas do solo ? pH em H2O e capacidade de troca catiônica (CTC) ? e ambientais ? elevação, plano de curvatura, perfil de curvatura, índice de umidade, aspecto e declividade do terreno, além de tipos de solos, índice de vegetação normalizada (NDVI), imagens Landsat 7 e litologia ? foram utilizadas como variáveis preditoras. A análise exploratória dos dados identificou valores extremos, os quais foram expurgados, na preparação para a análise por regressão linear múltipla (RLM). Aos resultados da RLM, foram adicionados os resultados de krigagem dos resíduos da regressão, com uma técnica de mapeamento digital de solos (MDS) denominada regressão-krigagem. Na região Serrana, as variáveis ambientais explicaram as variáveis químicas. A variável NDVI foi importante nas três regiões, o que evidencia a importância da cobertura vegetal para a predição da fertilidade do solo. Em geral, os solos analisados apresentaram baixo pH. Os valores de CTC, nas regiões estudadas, estão dentro do intervalo considerado bom para a fertilidade do solo.