6 resultados para Water Law, Land, Irrigation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influences of clearing native vegetation (Caatinga) in contour strips at 25 cm vertical interval on evaporation losses in cleared strips, annual runoff efficiency and annuall soil loss on gently sloped micro-waterheds in the arid zones of Northeast Brazil are reported. The alternate native vegetation (Caatinga) strips function very effectively as windbreaks thus reducing evaporation losses substantially in the leeward cleared strips. The runoff measured at the micro-watershed with cleared strips was many-fold lower than the runoff obtained at a completely denuded watershed even when it was protected by narrow based channel terraces. However, the annual runoff efficiency can be significantly increased in a strip cleared watershed if narrow based channel terraces are provided on the lower side of cleared strips. The annual soil losses in strip cleared watersheds as well as completely denuded waterhed of gentle slopes were negligible. Thus clearing land in alternate contour strips on a micro-watersheds shall substantially improve crop water use efficiency without creating any significant erosion problems. Additionally this treatment will increase runoff for water harvesting for irrigation purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Northeast of Brazil, vines can produce twice a year, because annual average temperature is 26ºC, with high solar radiation and water availability for irrigation. Many cultivars have been tested according to their adaptation to the climate and soil, and the main variety used for red wines is Syrah. This work aimed to evaluate five clones of Syrah, grafted on two rootstocks, in two harvests of the second semester of 2009 and 2010, according to the chemical analyses of the wines.The clones evaluated were 100, 174, 300, 470 and 525, the rootstocks were Paulsen 1103 and IAC 313 (Golia x Vitis caribeae). Grapes were harvested in November 2009 and 2010 and the yield was evaluated. Climate characteristics of each harvest was determined and correlated to the results. Wines were elaborated in glass tanks of 20 L, with alcoholic fermentation at 25ºC for seven days, then wines were pressed and malolactic fermentation was carried out at 18ºC for 20 days. The following parameters were analyzed: alcohol content, dry extract, total anthocyanins, total phenolic index. High performance liquid chromatography was used to determine tartaric, malic, lactic and citric organic acids. Results showed that wines presented different concentrations of classical analyses, phenolics and organic acids according to the harvest date, rootstocks and clones. Principal component analysis was applied on data and clusters with wine samples were formed, explaining the variability, and results are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper presents a simple method of irrigation scheduling using ICSWAB model for dry land crops. The main inputs to this approache are daily precipitation or irrigation amounts and open pan evaporation (US class 'A' pan-mesh covered). The fixed cumulative evapotranspiration procedure is better than fixed days or fixed percentage soil moisture procedures of irrigation scheduling. Fixed days procedures could be reasonably applied during nonrainy season.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Summary: Climate change has a potential to impact rainfall, temperature and air humidity, which have relation to plant evapotranspiration and crop water requirement. The purpose of this research is to assess climate change impacts on irrigation water demand, based on future scenarios derived from the PRECIS (Providing Regional Climates for Impacts Studies), using boundary conditions of the HadCM3 submitted to a dynamic downscaling nested to the Hadley Centre regional circulation model HadRM3P. Monthly time series for average temperature and rainfall were generated for 1961-90 (baseline) and the future (2040). The reference evapotranspiration was estimated using monthly average temperature. Projected climate change impact on irrigation water demand demonstrated to be a result of evapotranspiration and rainfall trend. Impacts were mapped over the target region by using geostatistical methods. An increase of the average crop water needs was estimated to be 18.7% and 22.2% higher for 2040 A2 and B2 scenarios, respectively. Objective ? To analyze the climate change impacts on irrigation water requirements, using downscaling techniques of a climate change model, at the river basin scale. Method: The study area was delimited between 4º39?30? and 5º40?00? South and 37º35?30? and 38º27?00? West. The crop pattern in the target area was characterized, regarding type of irrigated crops, respective areas and cropping schedules, as well as the area and type of irrigation systems adopted. The PRECIS (Providing Regional Climates for Impacts Studies) system (Jones et al., 2004) was used for generating climate predictions for the target area, using the boundary conditions of the Hadley Centre model HadCM3 (Johns et al., 2003). The considered time scale of interest for climate change impacts evaluation was the year of 2040, representing the period of 2025 to 2055. The output data from the climate model was interpolated, considering latitude/longitude, by applying ordinary kriging tools available at a Geographic Information System, in order to produce thematic maps.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

São Paulo state, Brazil, has been highlighted by the sugarcane crop expansion. The actual scenario of climate and land use changes, bring attention for the large-scale water productivity (WP) analyses. MODIS images were used together with gridded weather data for these analyses. A generalized sugarcane growing cycle inside a crop land mask, from September 2011 to October 2012, was considered in the main growing regions of the state. Actual evapotranspiration (ET) is quantified by the SAFER (Simple Algorithm for Evapotranspiration Retrieving) algorithm, the biomass production (BIO) by the RUE (Radiation Use Efficiency) Monteith?s model and WP is considered as the ratio of BIO to ET. During the four generalized sugarcane crop phases, the mean ET values ranged from 0.6 to 4.0 mm day-1; BIO rates were between 20 and 200 kg ha-1 day-1, resulting in WP ranging from 2.8 to 6.0 kg m-3. Soil moisture indicators are applied, indicating benefits from supplementary irrigation during the grand growth phase, wherever there is water availability for this practice. The quantification of the large-scale water variables may subsidize the rational water resources management under the sugarcane expansion and water scarcity scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to identify parents and obtain segregating populations of cowpea (Vigna unguiculata L. Walp.) with the potential for tolerance to water deficit. A full diallel was performed with six cowpea genotypes, and two experiments were conducted in Teresina, PI, Brazil in 2011 to evaluate 30 F2 populations and their parents, one under water deficit and the other under full irrigation.