7 resultados para Trees and shrubs.
Microclimate, development and productivity of robusta coffee shaded by rubber trees and at full sun.
Resumo:
Existem poucos estudos sobre arborização de café conilon com seringueira. Objetivou-se avaliar o microclima, desenvolvimento e produtividade do cafeeiro conilon cultivado a pleno sol e sob sombreamento proporcionado pela seringueira. O experimento foi composto por uma lavoura de café conilon (Coffea canephora), cultivada a pleno sol e outra lavoura de café consorciada com seringueira (Hevea brasiliensis). A seringueira e o cafeeiro foram plantados no sentido Leste/Oeste, em Jaguaré, Espírito Santo, Brasil. Avaliou-se a luminosidade, temperatura e umidade relativa do ar, concentração foliar de nutrientes, medição dos internódios dos ramos plagiotrópicos e ortotrópicos, área foliar, índice relativo de clorofila, e a produtividade do cafeeiro. O sombreamento influenciou diretamente no microclima, reduzindo a temperatura do ar no verão e no inverno e aumentando a umidade relativa. A luminosidade no verão teve uma redução media de 905 lumens ft-2 ao longo de todo dia, equivalente a 72,49%, e no inverno de 1665 lumens ft-2, equivalente a 88,04%. O sombreamento proporcionou maior estiolamento dos ramos plagiotrópicos e ortotrópicos, bem como maior expansão foliar. A concentração foliar de Fe e Mn foram maiores no cafeeiro arborizado. A clorofila b e total estimada foram maior no cafeeiro cultivado a pleno sol. O denso sombreamento oferecido pela seringueira nas condições estudadas proporcionou perdas na produtividade do cafeeiro, contudo, ocorre a formação da seringueira.
Resumo:
The competitive influence of the root system of the exotic grass Urochloa brizantha and the widespread forb Leonotis nepetifolia on the emergence, survival and early growth of the seedlings of eight tropical heliophilous herbaceous species, six early-successional woody species and five late-successional woody species from Brazil, grown in 3500-cm3 pots and in greenhouse without light restriction were assessed. The density of fine-root systems produced by the forb and the grass in pots were 6.8 cm cm-3 soil and 48.1 cm cm-3 soil, respectively. Seedlings survival of the heliophilous herbaceous, early- and late-successional woody species were 86%, 70% and 100% in presence of the forb root system and 12%, 14% and 100% in competition with grass root system, respectively. The competitive pressure applied by the grass root system on seedling growth of the heliophilous herbaceous, early- and late-successional woody species were 2.4, 1.9 and 1.4 times greater than the forb root system. Total root length of the heliophilous herbaceous, early- and late-successional woody species grown without competitors were 13, 33 and 5 times greater than in competition with forb, and were 66, 54 and 6 times greater than in competition with grass root system, respectively. The averages of fine-root diameter of plants grown without competitors were 209 microm for the heliophilous herbaceous, 281 microm for early-successional trees and 382 microm for late-successional trees. The root system of the forb did not avoid seedling establishment of most plant species, but the grass root system hampered more the establishment of heliophilous herbaceous and early-successional woody species than the seedling establishment of late-successional woody species. The different density of root systems produced in soil by the forb and the grass, and the distinct root traits (e.g. root diameter and root tissue density) of the early- and late-successional plant species can explain the differences in the establishment of seedlings of plant species belonging to different groups of tropical succession when exposed to below-ground competition.
Resumo:
The model presented allows simulating the pesticide concentration in fruit trees and estimating the pesticide bioconcentration factor in fruits of woody species. The model allows estimating the pesticide uptake by plants through the water transpiration stream and also the time in which maximum pesticide concentration occur in the fruits. The equation proposed presents the relationships between bioconcentration factor (BCF) and the following variables: plant water transpiration volume (Q), pesticide transpiration stream concentration factor (TSCF), pesticide stem-water partition coefficient (KWood,w), stem dry biomass (M) and pesticide dissipation rate in the soil-plant system (kEGS). The modeling started and was developed from a previous model ?Fruit Tree Model? (FTM), reported by Trapp and collaborators in 2003, to which was added the hypothesis that the pesticide degradation in the soil follows a first order kinetic equation. The model fitness was evaluated through the sensitivity analysis of the pesticide BCF values in fruits with respect to the model entry data variability.
Resumo:
Large-scale agriculture is increasing in anthropogenically modified areas in the Amazon Basin. Crops such as soybean, maize, oil palm, and others are being introduced to supply the world demand for food and energy. However, the current challenge is to enhance the sustainability of these areas by increasing efficiency of production chains and to improve environmental services. The Amazon Basin has experienced a paradigm shift away from the traditional slash-and-burn agricultural practices, which offers decision makers the opportunity to make innovative interventions to enhance the productivity in previously degraded areas by using trees to ecological advantage. This study describes a successful experiment integrating the production of soybean and paricá (Glycine max L. and Schizolobium amazonicum) based on previous research that indicated potential topoclimatic zones for planting paricá in the Brazilian state of Pará. This paper shows that a no-tillage system reduces the effects of drought compared to conventional tillage still used by many farmers in the region. The integrated system was implemented during the 2014/2015 season in 234.6 ha in the high-potential zone in the municipality of Ulianópolis, Pará. Both soybean and paricá were planted simultaneously. Paricá was planted in 5 m x 2 m inter-tree spacing totaling 228x103 trees per hectare and soybean, in 4 m x 100 m spacing, distributed in nine rows with a 0.45 m inter-row distance, occupying 80% of the area. The harvested soybean production was 3.4 t ha-1, higher than other soybean monocultures in eastern Pará. Paricá benefited from soybean fertilization in the first year: It exhibited rapid development in height (3.26 m) and average diameter (3.85 cm). Trees and crop rotation over the following years is six years for forest species and one year for each crop. Our results confirm there are alternatives to the current production systems able to diminish negative impacts resulting from monoculture. In addition, the system provided environmental services such as reduced soil erosion and increased carbon stock by soil cover with no-tillage soybean cultivation. The soybean cover contributes to increased paricá thermal regulation and lower forestry costs. We concluded that innovative interventions are important to show local farmers that it is possible to adapt an agroforest system to large-scale production, thus changing the Amazon.
Resumo:
Agroforestry systems with eucalyptus prevail in Central and Southeast Brazil, and little information is available about systems using native trees. The aim of the present study was to evaluate the development of seven native tree species grown under two agroforestry systems. The experiment was conducted starting in 2007 in 12-hectare area in the municipality of São Carlos, São Paulo state, Brazil. The tree species planted in the two systems (a silvopastoral system and an agrisilvicultural system) were: 'capixingui' (Croton floribundus) and 'mutambo' (Guazuma ulmifolia) (tutors), 'jequitibá-branco' (Cariniana estrellensis), 'canafistula' (Peltophorum dubium) and 'ipê felpudo' (Zeyheria tuberculosa) (timber trees), and 'angico-branco' (Anadenanthera colubrina) and 'pau-jacaré' (Piptadenia gonoacantha) (N-fixing trees). Data were collected for 48 months. The results show differences among tree development, which was evaluated as growth in height and diameter, as well as sensitivity to insect and disease damage. The overall results show that the agrisilvicultural system allowed better tree development. The species with best performance in the two systems were capixingui, mutambo and canafístula. Ipê-felpudo and jequitibá-branco showed the worst results. The high variability among individuals of the same species indicates the possibility of high production advances with selective breeding of these species.
Resumo:
Grapholita molesta (Busck) is one of the main pests of apple trees, and lives on their shoots and fruits. In southern Brazil, the insect is also found on old branches and structures similar to aerial roots, so-called burrknots. This study evaluated the development and population growth potential of G. molesta fed on burrknots, compared with apple fruit cultivar. Fuji and a corn-based artiÞcial diet. The study was carried out in the laboratory under controlled temperature (25 1C), relative humidity (7010%), and photophase (16 h). The biological parameters of the immature and adult stages were determined, and a fertility life table was constructed. Insects fed on burrknots showed a longer duration and a lower survival for the egg-to-adult period (29.3 d and 22.5%) compared with those that fed on apples (25.1 d and 30.0%) and artiÞcial diet (23.9 d and 54.8%). Insects reared on aerial roots had a lower pupal weight (10.0 mg) compared with those reared on either artiÞcial diet (13.7 mg) or apple cultivar. Fuji (12.4 mg). The fecundity and longevity of males and females did not signiÞcantly differ for the three foods. Based on the fertility life table, insects reared on burrknots had the lowest net reproductive rate (Ro), intrinsic rate of population growth (rm) and finite rate of increase, compared with insects reared on artiÞcial diet and apple fruit. Burrknots support the development of the complete cycle of G. molesta, which allows populations of this pest to increase in orchards.
Resumo:
The objective of this study was to determine the maximum depth, structure, diameter and biomass of the roots of common woody species in two savanna physiognomies (savanna woodland and open woody savanna) in Brazil's Pantanal wetland. The root systems of 37 trees and 34 shrubs of 15 savanna species were excavated to measure their length and depth and estimate the total root biomass through allometric relationships with stem diameter at ground level. In general, statistical regression models between root weight and stem diameter at ground level showed a significance of P < 0.05 and R2 values close to or above 0.8. The average depths of the root system in wetland savanna woodland and open woody savanna are 0.8 ± 0.3 m and 0.7 ± 0.2 m, respectively, and differ from the root systems of savanna woody species in non-flooding areas, whose depth usually ranges from 3 to 19 m.Weattribute this difference to the adaptation of woody plant to the shallow water table, particularly during the wet season. This singularity of woody species in wetland savannas is important when considering biomass and carbon stocks for national and global carbon inventories.