3 resultados para Table grape


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resumo: Anastrepha fraterculus (. Wied) é a principal praga de uvas de mesa (Vitis vinifera) na Região Sul do Brasil. Neste estudo, o objetivo foi investigar o efeito da punção de frutas por fêmeas adultas e infestação larvária por A. fraterculus na ocorrência da doença podridões na uva (cultivar "Itália"). Abstract: Anastrepha fraterculus (Wied.) is the main insect pest of table grapes (Vitis vinifera) in the Southern Region of Brazil. In this study, we aimed to investigate the effect of fruit puncturing by adult females and larval infestation by A. fraterculus on the occurrence of bunch rot disease in the grape (cultivar ?Itália?) by evaluating grapes (a) punctured for oviposition by females of A. fraterculus, sterilized in laboratory with novaluron (40 mg L−1) and further spray-inoculated separately with Botrytis cinerea (1 × 106 conidia mL−1), Glomerella cingulata (1 × 106 conidia mL−1), and bacteria and yeast that cause sour rot (1 × 105 cells mL−1), (b) grapes punctured for oviposition by non-sterilized females with pathogen spraying, (c) grapes with mechanical wounds and pathogen spraying, (d) grapes with no wounds and with pathogen spraying, (e) grapes punctured for oviposition by A. fraterculus chemically sterilized in laboratory with novaluron, (f) grapes punctured for oviposition by A. fraterculus non-sterilized in laboratory with novaluron, (g) grapes with mechanical wounds, and (h) grapes with no sterilization or pathogen spraying. Our data indicated that the mechanical and oviposition wounds caused by A. fraterculus increased the percentage of grapes infected by B. cinerea, G. cingulata, and microorganisms of acid rot. The grape puncturing by A. fraterculus and the mechanical wound allows the penetration of B. cinerea and microorganisms leading to acid rot. We conclude that the fruit fly A. fraterculus may facilitate phytopathogens penetration leading to bunch rots in the table grape Itália.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genomic selection (GS) has recently been proposed as a new selection strategy which represents an innovative paradigm in crop improvement, now widely adopted in animal breeding. Genomic selection relies on phenotyping and high-density genotyping of a sufficiently large and representative sample of the target breeding population, so that the majority of loci that regulate a quantitative trait are in linkage disequilibrium with one or more molecular markers and can thus be captured by selection. In this study we address genomic selection in a practical fruit breeding context applying it to a breeding population of table grape obtained from a cross between the hybrid genotype D8909-15 (Vitis rupestris × Vitis arizonica/girdiana), which is resistant to dagger nematode and Pierce?s disease (PD), and ?B90-116?, a susceptible Vitis vinifera cultivar with desirable fruit characteristics. Our aim was to enhance the knowledge on the genomic variation of agronomical traits in table grape populations for future use in marker-assisted selection (MAS) and GS, by discovering a set of molecular markers associated with genomic regions involved in this variation. A number of Quantitative Trait Loci (QTL) were discovered but this method is inaccurate and the genetic architecture of the studied population was better captured by the BLasso method of genomic selection, which allowed for efficient inference about the genetic contribution of the various marker loci. The technology of genomic selection afforded greater efficiency than QTL analysis and can be very useful in speeding up the selection procedures for agronomic traits in table grapes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There are approximately 90,000 ha of grapes in Brazil including wine, juice and table grapes. American varieties (Isabella, Niagara, Ives) comprise the largest part of Brazilian viticulture being destined for wine, juice and table grape. In Southern Brazil, these varieties are produced mainly in non grafted vineyards. Grape phylloxera is common on the roots of these varieties however the insect is not regarded as a serious problem. Leaf galls are common on V. vinifera cultivars, particularly Cabernet sauvignon, and this infestation can be severe in some years causing defoliation. No information about insect damage on leaves in relation to vineyard production and longevity is available. New selections from a breeding program aimed at developing new hybrids for wine production are highly susceptible to damage from leaf galling phylloxera. When leaf galling is severe, growers spray pyretroid and neonicotinoid insecticides however, in many situations, secondary mites can also damage the crop as a consequence of the foliar broad spectrum insecticides application. Studies about the genetic diversity of grape phylloxera strains in Brazil and their association with vine damage and secondary fungal infection must be conducted to clarify the importance of this pest to Brazilian viticulture.