5 resultados para TROPICAL SOILS
Resumo:
Although some radioecological studies have been accomplished in Brazilian soils supplying useful information to optimization of emergency planning actions in rural areas and to the management of soils contaminated by 137Cs, 60Co and 90Sr, few studies were made with transuranic elements in tropical agricultural areas. The different scenarios found in Brazilian agricultural environments enhance the importance of studying the biogeochemical behavior of radionuclides in representative soils. The objective of this work was to determine the mobility of 241Am in 3 different Brazilian agricultural soils evaluating migration with depth and Kd values for 241Am and the effect of organic amendments on this behavior. A strong effect of organic amendments on mobility of americium could be observed. The values of Kd obtained in all studied tropical soils were however smaller than those found in European soils and from those recommended by IAEA to be used as default values in the absence of regional data. This result reinforces the vulnerability of some tropical soils to a contamination, emphasizing the need to use of regional values.
Resumo:
Soil organic matter (SOM) plays a key role in maintaining the productivity of tropical soils, providing energy and substrate for the biological activity and modifying the physical and chemical characteristics that ensure the maintenance of soil quality and the sustainability of ecosystems. This study assessed the medium-term effect (six years) of the application of five organic composts, produced by combining different agro-industrial residues, on accumulation and chemical characteristics of soil organic matter. Treatments were applied in a long-term experiment of organic management of mango (OMM) initiated in 2005 with a randomized block design with four replications. Two external areas, one with conventional mango cultivation (CMM) and the other a fragment of regenerating Caatinga vegetation (RCF), were used as reference areas. Soil samples were collected in the three management systems from the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m layers, and the total organic carbon content and chemical fractions of organic matter were evaluated by determining the C contents of humin and humic and fulvic acids. Organic compost application significantly increased the contents of total C and C in humic substances in the experimental plots, mainly in the surface layer. However, compost 3 (50 % coconut bagasse, 40 % goat manure, 10 % castor bean residues) significantly increased the level of the non-humic fraction, probably due to the higher contents of recalcitrant material in the initial composition. The highest increases from application of the composts were in the humin, followed by the fulvic fraction. Compost application increased the proportion of higher molecular weight components, indicating higher stability of the organic matter.
Resumo:
ABSTRACT: Organic residues from sugarcane crop and processing (vinasse, boiler ash, cake filter, and straw) are commonly applied or left on the soil to enhance its fertility. However, they can influence pesticide degradation and sorption. The objective of this study was to assess the effect of adding these organic residues on the degradation and sorption of fipronil and atrazine in two soils of the State of Mato Grosso do Sul, MS, Brazil. The degradation experiment was carried out with laboratory-incubated (40 days; 28°C; 70% field capacity) soils (0-10cm). The batch equilibration method was used to determine sorption. Fipronil (half-life values of 15-105 days) showed to be more persistent than atrazine (7-17 days). Vinasse application to the soil favored fipronil and atrazine degradation, whereas cake filter application decreased the degradation rates for both pesticides. Values for sorption coefficients (Kd) were determined for fipronil (5.1-13.2mL g-1) and atrazine (0.5-1.5mL g-1). Only straw and cake filter residues enhanced fipronil sorption when added to the soil, whereas all sugarcane residues increased atrazine sorption. RESUMO: Resíduos orgânicos do cultivo e processamento da cana-de-açúcar (vinhaça, cinzas, torta de filtro e palha) são usualmente aplicados ou deixados no solo para aumentar sua fertilidade, mas eles podem influenciar na degradação e sorção de agrotóxicos. O objetivo deste estudo foi avaliar o efeito da adição desses resíduos orgânicos no solo sobre a degradação e sorção do fipronil e da atrazina em dois solos no Estado de Mato Grosso do Sul, MS, Brasil. O experimento de degradação foi realizado com solos (0-10cm) incubados em laboratório (40 dias; 28°C; 70% da capacidade de campo). Para determinar a sorção, foi usado o método da batelada. Fipronil mostrou ser mais persistente (valores de meia-vida entre 15-105 dias) que atrazina (7-17 dias). O solo com adição de vinhaça favoreceu a degradação de fipronil e atrazina, enquanto adição da torta de filtro desacelerou o processo. Os valores do coeficiente de sorção (Kd) foram determinados para fipronil (5,1-13,2mL g-1) e atrazina (0,5-1,5mL g-1). Apenas os resíduos palha e torta de filtro aumentaram a sorção de fipronil quando adicionados ao solo, enquanto todos os resíduos aumentaram a sorção de atrazina.
Resumo:
Introduction: Brazil, is one of the main agricultural producers in the world ranking 1st in the production of sugarcane, coffee and oranges. It is also 2nd as world producer of soybeans and a leader in the harvested yields of many other crops. The annual consumption of mineral fertilizers exceeds 20 million mt, 30% of which corresponds to potash fertilizers (ANDA, 2006). From this statistic it may be supposed that fertilizer application in Brazil is rather high, compared with many other countries. However, even if it is assumed that only one fourth of this enormous 8.5 million km2 territory is used for agriculture, average levels of fertilizer application per hectare of arable land are not high enough for sustainable production. One of the major constraints is the relatively low natural fertility status of the soils which contain excessive Fe and Al oxides. Agriculture is also often practised on sandy soils so that the heavy rainfall causes large losses of nutrients through leaching. In general, nutrient removal by crops such as sugarcane and tropical fruits is much more than the average nutrient application via fertilization, especially in regions with a long history of agricultural production. In the recently developed areas, especially in the Cerrado (Brazilian savanna) where agriculture has expanded since 1980, soils are even poorer than in the "old" agricultural regions, and high costs of mineral fertilizers have become a significant input factor in determining soybean, maize and cotton planting. The consumption of mineral fertilizers throughout Brazil is very uneven. According to the 1995/96 Agricultural Census, only in eight of the total of 26 Brazilian states, were 50 per cent or more of the farms treated "systematically" with mineral fertilizers; in many states it was less than 25 per cent, and in five states even less than 12 per cent (Brazilian Institute for Geography and Statistics; Censo Agropecuario1995/96, Instituto Brazileiro de Geografia e Estadistica; IBGE, www.ibge.gov.br). The geographical application distribution pattern of mineral fertilizers may be considered as an important field of research. Understanding geographical disparities in fertilization level requires a complex approach. This includes evaluation of the availability of nutrients in the soil (and related soil properties e.g. CEC and texture), the input of nutrients with fertilizer application, and the removal of nutrients by harvested yields. When all these data are compiled, it is possible to evaluate the balance of particular nutrients for certain areas, and make conclusions as to where agricultural practices should be optimized. This kind of research is somewhat complicated, because it relies on completely different sources of data, usually from incomparable data sources, e.g. soil characteristics attributed to soil type areas, in contrast to yields by administrative regions, or farms. A priority tool in this case is the Geographical Information System (GIS), which enables attribution of data from different fields to the same territorial units, and makes possible integration of these data in an "inputoutput" model, where "input" is the natural availability of a nutrient in the soil plus fertilization, and "output" export of the same nutrient with the removed harvested yield.
Resumo:
The continuous soybean-maize crop succession in the tropical region of Brazil has led to significant increases in the population size of root-knot (Meloidogyne incognita and M. javanica ) and root-lesion nematodes (Pratylenchus brachyurus), which make soils unsuitable for soybean cropping. A greenhouse study was conducted to identify sunflower genotypes adapted to the tropical region of Brazil and that are resistant to M. incognita, M. javanica and/or P. brachyurus . Two experiments for each nematode were conducted in a completely randomized design with six replicates. Gall index was calculated from visual scores (0?5) of gall intensity on roots for the root-knot nematode. Initial and final population density and reproduction factor were also measured for each nematode. Sunflower genotypes varied in resistance to the nematodes. Sunflower hybrids BRS 321 and BRS 323 were resistant to M. javanica and P. brachyurus and exhibited low gall index for M. incognita . The cultivars are good alternatives to using in the succession of soybean in nematode-infested areas of the tropical regions of Brazil. No sunflower genotype was identified as resistant to M. incognita and thus sunflower cropping is not indicated in areas infested with this nematode.