5 resultados para Rooting
Resumo:
Tecnicas de propagacao por meio de enraizamento de estacas tem sido amplamente empregadas na fruticultura, floricultura e silvicultura. No entanto, no Brasil, poucos estudos tem sido feitos com especies nativas. Neste estudo foi testado o enraizamento de estacas caulinares de seis especies nativas de Mata de Galeria do bioma Cerrado: Copaifera langsdorffii Desf. (copaiba), Tibouchina stenocarpa (DC.) Cogn. (quaresmeira), Piper arboreum Aubl. (pimenta-de-macaco), Inga laurina (Sw.) Willd. (inga), Calophyllum brasiliense Camb. (landim) e Bauhinia rufa (Bong.) Steud. (unha-de-vaca). Foi estudada a influencia de diferentes concentracoes de acido indolbutirico, AIB (0, 1000, 2000 e 4000 ppm), em talco, e tratamento com agua sob gotejamento no enraizamento de estacas basais e/ou apicais, conforme a especie, em duas epocas do ano, final das chuvas (marco-maio/98) e inicio da seca (junho/98). Com P. arboreum tambem foi feito um tratamento onde as estacas foram enraizadas usando agua como substrato. Os resultados mostraram que as especies apresentaram diferentes habilidades para formar raizes adventicias em estacas. As estacas de C. langsdorffii e T. stenocarpa nao formaram raizes em qualquer das epocas realizadas, enquanto P. arboreum e I. laurina formaram raizes nas estacas apicais coletadas nas duas epocas (chuvosa e seca). Porem, as estacas basais de P. arboreum formaram menos raizes do que as apicais e as estacas basais de I. laurina nao enraizaram. Ja em C. brasiliense observaram-se altas taxas de sobrevivencia das estacas coletadas nas duas epocas (final das chuvas e inicio da seca), mas nao houve enraizamento. Por ultimo, as estacas de B. rufa enraizaram somente nas coletas realizadas na estacao chuvosa. Os tratamentos auxinicos (AIB) nao tiveram efeitos sobre a percentagem final de enraizamento das estacas de P. arboreum (apicais e basais), de I. laurina (apicais) e de B. rufa, bem como sobre a porcentagem final de sobrevivencia das estacas de C. brasiliense. Entre as especies estudadas, as estacas apicais de P. arboreum apresentaram os percentuais de enraizamento mais elevados: de 63% a 83% no periodo chuvoso e de 63% a 90% no periodo seco. Nas estacas basais o enraizamento foi menor, variando de 7% a 20%, no periodo chuvoso, e de 0 a 13%, no periodo seco. A epoca de coleta afetou a sobrevivencia e o peso seco das estacas apicais de P. arboreum, mas nao o numero de estacas enraizadas. Ja nas estacas basais, onde a capacidade de enraizamento foi menor, a epoca de coleta afetou o enraizamento das estacas, mas nao a sobrevivencia. Nas estacas basais houve uma grande mortalidade das estacas nas duas epocas estudadas (chuva e seca). Em geral, os melhores resultados de enraizamento ocorreram na epoca seca para as estacas apicais e na epoca chuvosa para as estacas basais. A utilizacao de agua de torneira como substrato proporcionou resultados satisfatorios no enraizamento das estacas basais de P. arboreum tanto em copos (200 ml) com agua colocados na casa de vegetacao (87%) quanto no tanque com agua corrente (77%). Em I. laurina a epoca de coleta influenciou a sobrevivencia das estacas apicais. As estacas coletadas na estacao chuvosa apresentaram melhores resultados sobrevivencia do que aquelas coletadas na estacao seca. Nas coletas feitas no final da epoca chuvosa obteve-se uma media de 15% de enraizamento e uma variacao de 3 a 23% de estacas enraizadas conforme os tratamentos. Na seca a media foi de 7% e a variacao foi de 0 a 13%. No periodo seco as medidas de peso seco das raizes foram mais inferiores do que na epoca chuvosa. A maioria das estacas vivas de I. laurina que nao enraizaram formaram calos, sugerindo que um periodo maior de observacao pode levar a maiores percentuais de enraizamento. Em C. brasiliense a epoca de coleta influenciou a sobrevivencia das estacas, de forma que no periodo chuvoso a porcentagem media de sobrevivencia (81%) foi maior do que na epoca seca (71%). Bauhinia rufa teve uma baixa capacidade de enraizamento por meio de estacas coletadas nas duas epocas do ano: apenas 3% das estacas enraizaram quando tratadas com 1000 e 4000 ppm de AIB; nos outros tratamentos nao ocorreu enraizamento. Pelos resultados, sugere-se que P. arboreum e uma especie de facil enraizamento por meio de estacas apicais, nas duas datas estudadas (no final das chuvas e inicio da seca), mas o uso de estacas basais nestas datas e inviavel. Sugere-se tambem que, devido aos baixos percentuais de enraizamento, nas duas epocas (chuva e seca), I. laurina e B. rufa sao especies de dificil enraizamento por meio de estacas apicais e basais com folhas. Ja C. Brasiliense, C. langsdorffii e T. stenocarpa nao enraizaram e podem ser consideradas especies de dificil enraizamento, nestas duas epocas estudadas (chuvosa e seca).
Resumo:
In Brazil, off-season rainfed maize is usually affected by limited water due to irregularities in rainfall. Alternatives to mitigate these effects include ground cover to reduce evaporation losses and the use of cultivars with a deeper rooting system. We conducted a study in Goias, Brazil, to evaluate the influence of different crop management strategies to mitigate the effect of limited water in maize yield. Modeling was used to simulate scenarios that consisted of 0, 3.5 and 5.0 t ha-1 of soybean residue left on the soil surface combined with cultivar ideotypes with 0.30 m, 0.50 m 0.70 m deep rooting system grown with 60 and 340 kg ha-1of nitrogen. The results showed that maintaining residue in the soil surface in combination with the use of cultivars with deeper rooting systems favored higher yields of off-season maize. Our results also indicated that a cultivar with rooting system in the top 0.50 m of the soil fertilized with a high nitrogen rate tended to be more efficient in the use of the soil available water
Resumo:
Micropropagation requires controlling contamination that might compromise the success of the process. Thermal sterilization is traditionally used; however, costs deriving from equipment acquisition and maintenance render this technique costly. With the purpose of finding an alternative to thermal sterilization, this research aimed at assessing the efficiency and ideal concentration of sodium hypochlorite for sterilization of culture media and glassware used during rooting of micropropagated Gerbera hybrida cv. Essandre. Two experiments were carried out. In the first one, treatments consisted of control I (no sterilization), control II (thermal sterilization), and total active chlorine concentrations of 0.0005, 0.001, 0.002 and 0.003%. In the second experiment, based on the results observed in the first experiment, treatments consisted of control I (thermal sterilization) and II (chemical sterilization), and total active chlorine concentrations of 0.002, 0.0025 and 0.003%. Plant behavior was assessed based on the length of aerial part and roots, number of roots, and dry biomass of plants. Results showed that the addition of an active chlorine concentration of 0.003% to culture media provided total control of contaminants, and there were no significant differences regarding the variables analyzed between plants obtained with thermal sterilization and with sodium hypochlorite sterilization. Thus, chemical sterilization can be used as a replacement for thermal sterilization of nutrition media for rooting of gerbera in vitro.
Resumo:
Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE) flux components of the terrestrial latent heat flux (λE), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy) seasons where λET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.
Resumo:
Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (?ET) and evaporation (?EE) flux components of the terrestrial latent heat flux (?E), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on ?ET and ?EE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, ?ET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on ?ET during the wet (rainy) seasons where ?ET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80?% of the variances of ?ET. However, biophysical control on ?ET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65?% of the variances of ?ET, and indicates ?ET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between ?ET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.