6 resultados para Root system efficiency
Resumo:
The competitive influence of the root system of the exotic grass Urochloa brizantha and the widespread forb Leonotis nepetifolia on the emergence, survival and early growth of the seedlings of eight tropical heliophilous herbaceous species, six early-successional woody species and five late-successional woody species from Brazil, grown in 3500-cm3 pots and in greenhouse without light restriction were assessed. The density of fine-root systems produced by the forb and the grass in pots were 6.8 cm cm-3 soil and 48.1 cm cm-3 soil, respectively. Seedlings survival of the heliophilous herbaceous, early- and late-successional woody species were 86%, 70% and 100% in presence of the forb root system and 12%, 14% and 100% in competition with grass root system, respectively. The competitive pressure applied by the grass root system on seedling growth of the heliophilous herbaceous, early- and late-successional woody species were 2.4, 1.9 and 1.4 times greater than the forb root system. Total root length of the heliophilous herbaceous, early- and late-successional woody species grown without competitors were 13, 33 and 5 times greater than in competition with forb, and were 66, 54 and 6 times greater than in competition with grass root system, respectively. The averages of fine-root diameter of plants grown without competitors were 209 microm for the heliophilous herbaceous, 281 microm for early-successional trees and 382 microm for late-successional trees. The root system of the forb did not avoid seedling establishment of most plant species, but the grass root system hampered more the establishment of heliophilous herbaceous and early-successional woody species than the seedling establishment of late-successional woody species. The different density of root systems produced in soil by the forb and the grass, and the distinct root traits (e.g. root diameter and root tissue density) of the early- and late-successional plant species can explain the differences in the establishment of seedlings of plant species belonging to different groups of tropical succession when exposed to below-ground competition.
Resumo:
The objective of this study was to determine the maximum depth, structure, diameter and biomass of the roots of common woody species in two savanna physiognomies (savanna woodland and open woody savanna) in Brazil's Pantanal wetland. The root systems of 37 trees and 34 shrubs of 15 savanna species were excavated to measure their length and depth and estimate the total root biomass through allometric relationships with stem diameter at ground level. In general, statistical regression models between root weight and stem diameter at ground level showed a significance of P < 0.05 and R2 values close to or above 0.8. The average depths of the root system in wetland savanna woodland and open woody savanna are 0.8 ± 0.3 m and 0.7 ± 0.2 m, respectively, and differ from the root systems of savanna woody species in non-flooding areas, whose depth usually ranges from 3 to 19 m.Weattribute this difference to the adaptation of woody plant to the shallow water table, particularly during the wet season. This singularity of woody species in wetland savannas is important when considering biomass and carbon stocks for national and global carbon inventories.
Resumo:
Estudou-se o efeito de cinco niveis de irrigacao sobre a distribuicao do sistema radicular e producao do tomateiro (Lycopersicum). Usou-se um delineamento de blocos ao acaso, em cinco tratamentos e cinco repeticoes. Concluiu-se que o manejo da irrigacao para o tomate industrial pode ser conduzido dentro de -0,3 e -2 bases de potencial matricial, possibilitando maiores intervalos de irrigacao, sem que ocorra diferenca significativa na producao.
Resumo:
2015
Soil management systems for sustainable melon cropping in the Submedian of the São Francisco Valley.
Resumo:
Changes in soils management systems, including the application of green manure, are able to increase crop productivity. The aim of this study was to propose a soil management system with the use of green manure to improve the nutritional status and melon productivity in the submedian of the São Francisco Valley. The experiment was installed in Typic Plinthustalf and conducted in split plot. There were two soil tillage systems, tillage (T) and no tillage (NT), and three types of green manure (two vegetal cocktails: VC1- 75% legumes (L) + 25% non-legumes (NL); VC2- 25% L+ 75% NL and spontaneous vegetation (SV)). The experimental design was a randomised block with four replications. Fourteen species of legumes, grasses and oilseeds were used for the composition of the plant cocktails. We evaluated production of the dry shoot and root biomass and carbon and nutrient accumulation by green manures and melon plant. Data were subjected to analysis of variance and the treatment means were compared by Tukey´s test (P<0.05). Shoot biomass production and carbon and nutrient accumulation were higher in plant mixtures compared to spontaneous vegetation. The root system of the plant cocktails added larger quantities of biomass and nutrients to the soil to a depth of 0.60 m when compared to the spontaneous vegetation. The cultivation of plant cocktails with soil tillage, regardless of their composition, is a viable alternative for adding biomass and nutrients to the soil in melon crops in semi-arid conditions, providing productivity increases.
Resumo:
2016