5 resultados para Renda - Distribuição - Modelos econometrísticos
Resumo:
O IPCC (Painel Intergovernamental de Mudanças Climáticas) disponibiliza cenários de clima do futuro de modelos climáticos globais provenientes de diferentes instituições de pesquisa do mundo. Este trabalho teve como objetivo propor metodologia em SIG (Sistema de nformações Geográficas) para avaliar o cenário de mudanças climáticas no Brasil utilizando modelos do IPCC-AR4 para as variáveis temperatura média, máxima e mínima.Os dados georreferenciados do AR4 foram manipulados utilizando SIG Idrisi 32. Foram obtidos os mapas climáticos referentes à média de modelos selecionados para o ano de 2080 dos cenários A (pessimista) e B (otimista). A análise foi realizada comparando os mapas do AR4 e os mapas do TAR, apresentando amplitudes entre -4ºC e 4ºC para temperatura média, 8ºC a 8ºC para temperatura máxima e 6ºC e 4ºC para temperatura mínima, considerando as variações ao longo dos meses do ano e da distribuição espacial no País.
Resumo:
O gerenciamento de riscos climáticos requer informação sobre estados futuros de variáveis climáticas, geralmente representada por funções de distribuição de probabilidade acumulada (FDPA, P(Y?y) ou por sua funções complementares (P(Y>y)), ditas funções probabilidade de exceder (FPE). Uma variedade de métodos estatísticos tem sido utilizada para estimação de FPE, incluindo, modelos de regressão linear múltipla, regressão logística e métodos não paramétricos (MAIA et al, 2007; LO et al, 2008). Apesar de parecer intuitivo que a incerteza associada às estimativas das FPE é fundamental para os tomadores de decisão, esse tipo de informação raramente é fornecido. Modelos estatísticos de previsão baseados em séries históricas da variável de interesse (chuva, temperatura) e de preditores derivados de estados do oceano e da atmosfera (índices climáticos tais como: temperaturas da superfície do mar ? TSM, índice de oscilação sul, IOS, El Nino/Oscilação Sul - ENSO) se constituem em alternativas promissoras para auxílio às tomada de decisão, em escalas locais e regionais. O uso de tais indicadores permite incorporar mudanças de padrão derivadas de mudanças climáticas em modelos estatísticos que utilizam informação histórica. Neste trabalho, mostramos como o Modelo de Regressão de Cox (MRC; COX, 1972), tradicionalmente utilizado para modelagem de tempos de falha, em investigações na área médica e em ciências sociais, pode ser de grande utilidade para avaliação probabilística de riscos climáticos, mesmo para variáveis que não representam tempos de falha tais como chuva, produtividade de culturas, lucros, entre outras. O MRC pode ser utilizado para avaliar a influência de preditores (índices climáticos) sobre riscos de interesse (representados pelas FPE), estimar FPE para combinações específicas de preditores e incertezas associadas além de fornecer informação sobre riscos relativos, de grande valor para tomadores de decisão. Apresentamos dois estudos de caso nos quais o Modelo de Cox foi usado para investigar: a) o efeito do IOS e de um índice derivado de TSM do Pacífico sobre o início da estação chuvosa em Cairns (Austrália) e b) a influência o índice Nino 3.4, derivado de estados da TSM no Pacífico Equatorial sobre o chuva acumulada no período de Março a Junho em Limoeiro do Norte (Ceará, Brasil). O objetivo da apresentação desses estudos é meramente didático, para demonstrar o potencial do método proposto como ferramenta de auxílio à tomada de decisão.
Resumo:
O atual nível das mudanças uso do solo causa impactos nas mudanças ambientais globais. Os processos de mudanças do uso e cobertura do solo são processos complexos e não acontecem ao acaso sobre uma região. Geralmente estas mudanças são determinadas localmente, regionalmente ou globalmente por fatores geográficos, ambientais, sociais, econômicos e políticos interagindo em diversas escalas temporais e espaciais. Parte desta complexidade é capturada por modelos de simulação de mudanças do uso e cobertura do solo. Uma etapa do processo de simulação do modelo CLUE-S é a quantificação da influência local dos impulsores de mudança sobre a probabilidade de ocorrência de uma classe de uso do solo. Esta influência local é obtida ajustando um modelo de regressão logística. Um modelo de regressão espacial é proposto como alternativa para selecionar os impulsores de mudanças. Este modelo incorpora a informação da vizinhança espacial existente nos dados que não é considerada na regressão logística. Baseado em um cenário de tendência linear para a demanda agregada do uso do solo, simulações da mudança do uso do solo para a microbacia do Coxim, Mato Grosso do Sul, foram geradas, comparadas e analisadas usando o modelo CLUE-S sob os enfoques da regressão logística e espacial para o período de 2001 a 2011. Ambos os enfoques apresentaram simulações com muito boa concordância, medidas de acurácia global e Kappa altos, com o uso do solo para o ano de referência de 2004. A diferença entre os enfoques foi observada na distribuição espacial da simulação do uso do solo para o ano 2011, sendo o enfoque da regressão espacial que teve a simulação com menor discrepância com a demanda do uso do solo para esse ano.
Resumo:
Comumente dados de precipitação pluvial apresentam variação e a obtenção da estimativa de sua distribuição espacial é primordial no planejamento agrícola e ambiental. O objetivo neste trabalho foi comparar o método de estimação dos mínimos quadrados ponderados para ajuste de modelos ao semivariograma com o método de tentativa e erro, através da técnica de auto-validação "jack-knifing", para dados de precipitação pluvial média anual do Estado de São Paulo. Observações de precipitação correspondentes ao período de 1957 a 1997 foram usadas para trezentos e setenta e nove (379) estações pluviométricas abrangendo todo o Estado de São Paulo, representando uma área de aproximadamente 248.808,8 km². A periodicidade exibida pelos semivariogramas foi ajustada pelo modelo "hole effect", em que os parâmetros foram estimados com maior precisão pelo método de mínimos quadrados ponderados quando comparado com o método de tentativa e erro. O método de auto-validação "jack-knifing" mostrou-se adequado para a definição de métodos e modelos a serem usados para semivariâncias, cujo procedimento permitiu definir dezesseis vizinhos como o número ideal para a estimativa por krigagem de valores de precipitação pluvial para locais não amostrados no Estado de São Paulo.
Resumo:
A zona rural do município de Pedreira apresenta sua paisagem fragmentada causada pela expansão agrícola ocorrida na região na época da implantação de cafezais e posteriormente pastagens. Assim sendo uma proposta de sistemas agroflorestais com potencial apícola apresenta-se como uma estratégia altamente recomendável na recuperação de áreas degradadas aliada ao aumento de renda através da apicultura além dos serviços ambientais gerados pela atividade. O objetivo geral desse trabalho foi a elaboração de desenhos de sistemas agroflorestais com finalidades apícolas e o objetivo específico analisar o conhecimento etnobotânico dos agricultores e apicultores sobre as condições locais, como ponto de partida para implementação e execução de planos de recuperação de áreas degradadas, com enfoque à proteção de Áreas de Preservação Permanente e Reserva Legal. A proposta sistemas agroflorestais com potencial apícola são passíveis de serem executadas considerando a multifuncionalidade a que servem, desde os aspectos legais, ecológicos, econômicos e sociais.