1 resultado para Recurrent neural network
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (14)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Aston University Research Archive (51)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (43)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (25)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (27)
- CentAUR: Central Archive University of Reading - UK (92)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (22)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (19)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (13)
- Digital Peer Publishing (5)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (27)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (25)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (4)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (4)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (17)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (108)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (15)
- Scielo Saúde Pública - SP (41)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (23)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (7)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (14)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (38)
- Université de Montréal (1)
- Université de Montréal, Canada (28)
- University of Michigan (1)
- University of Queensland eSpace - Australia (53)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (1)
Resumo:
Digital soil mapping is an alternative for the recognition of soil classes in areas where pedological surveys are not available. The main aim of this study was to obtain a digital soil map using artificial neural networks (ANN) and environmental variables that express soillandscape relationships. This study was carried out in an area of 11,072 ha located in the Barra Bonita municipality, state of São Paulo, Brazil. A soil survey was obtained from a reference area of approximately 500 ha located in the center of the area studied. With the mapping units identified together with the environmental variables elevation, slope, slope plan, slope profile, convergence index, geology and geomorphic surfaces, a supervised classification by ANN was implemented. The neural network simulator used was the Java NNS with the learning algorithm "back propagation." Reference points were collected for evaluating the performance of the digital map produced. The occurrence of soils in the landscape obtained in the reference area was observed in the following digital classification: medium-textured soils at the highest positions of the landscape, originating from sandstone, and clayey loam soils in the end thirds of the hillsides due to the greater presence of basalt. The variables elevation and slope were the most important factors for discriminating soil class through the ANN. An accuracy level of 82% between the reference points and the digital classification was observed. The methodology proposed allowed for a preliminary soil classification of an area not previously mapped using mapping units obtained in a reference area