3 resultados para PLANT-POLLINATOR INTERACTIONS
Resumo:
Floral morphology and biology are important characteristics for plant-pollinator interactions and may influence the behavior of these agents. This study aimed to determine which floral attributes of different melon hybrids influence this interaction and, consequently, their attractiveness in simultaneous crops. The study was conducted in the region of Petrolina, State of Pernambuco (PE)/Juazeiro, State of Bahia (BA) and Mossoró, State of Rio Grande do Norte (RN), in areas with the following melon hybrids: Yellow type, Piel de Sapo, Cantaloupe and Galia. For studies on floral morphology and biology, hermaphrodites and male flowers of each hybrid were analyzed for their size and nectar chamber size, pollen and nectar production, anthesis time and flower lifespan. Floral visitors were observed simultaneously in hybrids of three types of melon, from 5:00 a.m. to 6:00 p.m., in the two study sites. Evaluations of the corolla diameter and flower height indicated that the hermaphrodite flowers were larger in size than male flowers in all types of melon investigated, in both study sites. As for nectar chamber, male flowers are larger in width, but smaller in height, compared to hermaphrodite flowers. Regarding the volume of nectar, differences were found between floral types for the hybrids evaluated, in the two study sites; the hermaphrodite flowers produced 2-7 times more nectar than male flowers in all studied hybrids. Observations of visits of Apis mellifera to areas with simultaneous flowering of the three types of melon demonstrated differences in the frequency of visits between hybrids, floral type and foraged resource. Flowers of the hybrids Piel de Sapo and Cantaloupe exhibited larger corolla diameter, larger dimensions of the nectar chamber and greater supply of resources for foraging, which could explain the higher number of visits of bees to their flowers in the sites studied.
Resumo:
Visando conhecer as interações entre fungos micorrízicos arbusculares e bactérias diazotróficas na cultura da mandioca (Manihot esculenta Crantz), foram conduzidos vários experimentos para avaliar os efeitos de exsudatos de mandioca e de bactérias nos fungos micorrízicos, e a produção de ácido indolacético (AIA) in vitro pelas bactérias diazotróficas. Os experimentos evidenciaram que as bactérias diazotróficas estimularam a colonização micorrízica de Glomus clarum a partir do 30o dia. Os exsudatos de mandioca e das bactérias não apresentaram efeito na germinação de Gigaspora gigantea, mas influenciaram seu crescimento micelial. A adição de exsudatos de mandioca estimulou o crescimento das bactérias diazotróficas in vitro, evidenciando que podem existir, nos exsudatos, substâncias que atuariam como sinais moleculares ou estimulantes do crescimento, e não como fatores nutricionais. As bactérias diazotróficas apresentam ainda capacidade de produzir AIA in vitro. Azospirillum lipoferum isolado da mandioca produziu até 130 mM de AIA após 48 horas de incubação, ao passo que Klebsiella sp. produziu cerca 60 mM e a Bactéria E, aproximadamente 20 mM.
Resumo:
Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation?atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.