1 resultado para NEOTROPICAL STREAMS
Filtro por publicador
- Aberdeen University (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (6)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- Aston University Research Archive (8)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (52)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (82)
- Biodiversity Heritage Library, United States (13)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (13)
- Brock University, Canada (3)
- CentAUR: Central Archive University of Reading - UK (19)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (18)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (16)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (8)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (6)
- DRUM (Digital Repository at the University of Maryland) (4)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (17)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Memorial University Research Repository (2)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (17)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de El Salvador (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (312)
- Repositorio Institucional UNISALLE - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (156)
- Universidad de Alicante (6)
- Universidad Politécnica de Madrid (7)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (13)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (5)
- Université de Montréal, Canada (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (65)
- University of Queensland eSpace - Australia (20)
- University of Southampton, United Kingdom (8)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Clustering data streams is an important task in data mining research. Recently, some algorithms have been proposed to cluster data streams as a whole, but just few of them deal with multivariate data streams. Even so, these algorithms merely aggregate the attributes without touching upon the correlation among them. In order to overcome this issue, we propose a new framework to cluster multivariate data streams based on their evolving behavior over time, exploring the correlations among their attributes by computing the fractal dimension. Experimental results with climate data streams show that the clusters' quality and compactness can be improved compared to the competing method, leading to the thoughtfulness that attributes correlations cannot be put aside. In fact, the clusters' compactness are 7 to 25 times better using our method. Our framework also proves to be an useful tool to assist meteorologists in understanding the climate behavior along a period of time.