2 resultados para Metals at high temperatures


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dichelops melacanthus was studied under controlled conditions (60 ± 10% RH and 14/10 h L/D photoperiod), and three constant temperatures (19, 25, and 31 ± 2 °C). Fresh pods of MON 87701 × MON 89788 soybeans and its near non-Bt isoline (A5547) were supplied to nymphs and adults. The biology of T. podisi was studied in the same controlled RH conditions, but only at the standard temperature of 25 ± 2°C. Overall, the development of D. melacanthus was better at higher temperatures, which accelerated the development of the stink bug without affecting adult biological parameters. No influence of Bt-soybeans on the biology of the pest was observed in any temperature studied, which shows that D. melacanthus is not affected by this transgenic soybean. The egg parasitoid T. podisi also was not harmed when it parasitized eggs of the pest fed with MON 87701 × MON 89788 soybeans, with similar results to those obtained in non-Bt isogenic soybeans. Thus, this study demonstrates that D. melacanthus is favored at high temperatures (31 ± 2 °C), and that neither did MON 87701 × MON 89788 soybean pods affect the development of the pest nor its parasitoid T. podisi.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF), which is intrinsically present or may be introduced in soils by inoculation, is an example of natural and renewable resource to increase plant nutrient uptake. This kind of fungi produces structures (hyphae, arbuscles and sometimes vesicles) inside the plant root cortex. This mutualistic relationship promotes plant gains in terms of water and nutrient absorption (mainly phosphorus). Biochar can benefit plant interaction with AMF, however, it can contain potentially toxic compounds such as heavy metals and organic compounds (e.g. dioxins, furans and polycyclic aromatic hydrocarbons), depending on the feedstock and pyrolysis conditions, which may damage organisms. For these reasons, the present work will approach the impacts of biochar application on soil attributes, AMF-plant symbiosis and its responses in plant growth and phosphorus uptake. Eucalyptus biochar produced at high temperatures increases sorghum growth; symbiosis with AMF; and enhances spore germination. Enhanced plant growth in the presence of high temperature biochar and AMF is a response of root branching stimulated by an additive effect between biochar characteristics and root colonization. Biochar obtained at low temperature reduces AMF spore germination; however it does not affect plant growth and symbiosis in soil.