2 resultados para Mapping class group


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to apply fuzzy majority multicriteria group decision?making to determine risk areas for foot?and?mouth disease (FMD) introduction along the border between Brazil and Paraguay. The study was conducted in three municipalities in the state of Mato Grosso do Sul, Brazil, located along the border with Paraguay. Four scenarios were built, applying the following linguistic quantifiers to describe risk factors: few, half, many, and most. The three criteria considered to be most likely to affect the vulnerability to introduction of FMD, according to experts? opinions, were: the introduction of animals in the farm, the distance from the border, and the type of property settlements. The resulting maps show a strong spatial heterogeneity in the risk of FMD introduction. The used methodology brings out a new approach that can be helpful to policy makers in the combat and eradication of FMD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital soil mapping is an alternative for the recognition of soil classes in areas where pedological surveys are not available. The main aim of this study was to obtain a digital soil map using artificial neural networks (ANN) and environmental variables that express soillandscape relationships. This study was carried out in an area of 11,072 ha located in the Barra Bonita municipality, state of São Paulo, Brazil. A soil survey was obtained from a reference area of approximately 500 ha located in the center of the area studied. With the mapping units identified together with the environmental variables elevation, slope, slope plan, slope profile, convergence index, geology and geomorphic surfaces, a supervised classification by ANN was implemented. The neural network simulator used was the Java NNS with the learning algorithm "back propagation." Reference points were collected for evaluating the performance of the digital map produced. The occurrence of soils in the landscape obtained in the reference area was observed in the following digital classification: medium-textured soils at the highest positions of the landscape, originating from sandstone, and clayey loam soils in the end thirds of the hillsides due to the greater presence of basalt. The variables elevation and slope were the most important factors for discriminating soil class through the ANN. An accuracy level of 82% between the reference points and the digital classification was observed. The methodology proposed allowed for a preliminary soil classification of an area not previously mapped using mapping units obtained in a reference area