2 resultados para MOLECULAR-PARAMETERS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Selection among broilers for performance traits is resulting in locomotion problems and bone disorders, once skeletal structure is not strong enough to support body weight in broilers with high growth rates. In this study, genetic parameters were estimated for body weight at 42 days of age (BW42), and tibia traits (length, width, and weight) in a population of broiler chickens. Quantitative trait loci (QTL) were identified for tibia traits to expand our knowledge of the genetic architecture of the broiler population. Genetic correlations ranged from 0.56 +/- 0.18 (between tibia length and BW42) to 0.89 +/- 0.06 (between tibia width and weight), suggesting that these traits are either controlled by pleiotropic genes or by genes that are in linkage disequilibrium. For QTL mapping, the genome was scanned with 127 microsatellites, representing a coverage of 2630 cM. Eight QTL were mapped on Gallus gallus chromosomes (GGA): GGA1, GGA4, GGA6, GGA13, and GGA24. The QTL regions for tibia length and weight were mapped on GGA1, between LEI0079 and MCW145 markers. The gene DACH1 is located in this region; this gene acts to form the apical ectodermal ridge, responsible for limb development. Body weight at 42 days of age was included in the model as a covariate for selection effect of bone traits. Two QTL were found for tibia weight on GGA2 and GGA4, and one for tibia width on GGA3. Information originating from these QTL will assist in the search for candidate genes for these bone traits in future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correlation between genetic parameters and factors such as backfat thickness (BFT), rib eye area (REA), and body weight (BW) were estimated for Canchim beef cattle raised in natural pastures of Brazil. Data from 1648 animals were analyzed using multi-trait (BFT, REA, and BW) animal models by the Bayesian approach. This model included the effects of contemporary group, age, and individual heterozygosity as covariates. In addition, direct additive genetic and random residual effects were also analyzed. Heritability estimated for BFT (0.16), REA (0.50), and BW (0.44) indicated their potential for genetic improvements and response to selection processes. Furthermore, genetic correlations between BW and the remaining traits were high (P > 0.50), suggesting that selection for BW could improve REA and BFT. On the other hand, genetic correlation between BFT and REA was low (P = 0.39 ± 0.17), and included considerable variations, suggesting that these traits can be jointly included as selection criteria without influencing each other. We found that REA and BFT responded to the selection processes, as measured by ultrasound. Therefore, selection for yearling weight results in changes in REA and BFT.