2 resultados para Low-abundance Proteins


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhizobium freirei PRF 81 is employed in common bean commercial inoculants in Brazil, due to its outstanding efficiency in fixing nitrogen, competitiveness and tolerance to abiotic stresses. Among the environmental conditions faced by rhizobia in soils, acidity is perhaps the encountered most, especially in Brazil. So, we used proteomics based approaches to study the responses of PRF 81 to a low pH condition. R. freirei PRF 81 was grown in TY medium until exponential phase in two treatments: pH 6,8 and pH 4,8. Whole-cell proteins were extracted and separated by two-dimensional gel electrophoresis, using IPG-strips with pH range 4-7 and 12% polyacrilamide gels. The experiment was performed in triplicate. Protein spots were detected in the high-resolution digitized gel images and analyzed by Image Master 2D Platinum v 5.0 software. Relative volumes (%vol) of compared between the two conditions tested and were statistically evaluated (p ≤ 0.05). Even knowing that R. freirei PRF 81 can still grow in more acid conditions, pH 4.8 was chosen because didn´t affect significantly the bacterial growth kinetics, a factor that could compromise the analysis. Using a narrow pH range, the gel profiles displayed a better resolution and reprodutibility than using broader pH range. Spots were mostly concentrated between pH 5-7 and molecular masses between 17-95 kDa. From the six hundred well-defined spots analyzed, one hundred and sixty-three spots presented a significant change in % vol, indicating that the pH led to expressive changes in the proteome of R. freirei PRF 81. Of these, sixty-one were up-regulated and one hundred two was downregulated in pH 4.8 condition. Also, fourteen spots were only identified in the acid condition, while seven spots was exclusively detected in pH 6.8. Ninety-five differentially expressed spots and two exclusively detected in pH 4,8 were selected for Maldi-Tof identification. Together with the genome sequencing and the proteome analysis of heat stress, we will search for molecular determinants of PRF 81 related to capacity to adapt to stressful tropical conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Cassava (Manihot esculenta Crantz) storage root provides a staple food source for millions of people worldwide. Increasing the carotenoid content in storage root of cassava could provide improved nutritional and health benefits. Because carotenoid accumulation has been associated with storage root color, this study characterized carotenoid profiles, and abundance of key transcripts associated with carotenoid biosynthesis, from 23 landraces of cassava storage root ranging in color from white-to-yellow-to-pink. This study provides important information to plant breeding programs aimed at improving cassava storage root nutritional quality. RESULTS: Among the 23 landraces, five carotenoid types were detected in storage root with white color, while carotenoid types ranged from 1 to 21 in storage root with pink and yellow color. The majority of storage root in these landraces ranged in color from pale-to-intense yellow. In this color group, total ß-carotene, containing all-E-, 9-Z-, and 13-Z-ß-carotene isomers, was the major carotenoid type detected, varying from 26.13 to 76.72 %. Although no ?-carotene was observed, variable amounts of a ?-ring derived xanthophyll, lutein, was detected; with greater accumulation of ?-ring xanthophylls than of ß-ring xanthophyll. Lycopene was detected in a landrace (Cas51) with pink color storage root, but it was not detected in storage root with yellow color. Based on microarray and qRT-PCR analyses, abundance of transcripts coding for enzymes involved in carotenoid biosynthesis were consistent with carotenoid composition determined by contrasting HPLC-Diode Array profiles from storage root of landraces IAC12, Cas64, and Cas51. Abundance of transcripts encoding for proteins regulating plastid division were also consistent with the observed differences in total ß-carotene accumulation. CONCLUSIONS: Among the 23 cassava landraces with varying storage root color and diverse carotenoid types and profiles, landrace Cas51 (pink color storage root) had low LYCb transcript abundance, whereas landrace Cas64 (intense yellow storage root) had decreased HYb transcript abundance. These results may explain the increased amounts of lycopene and total ß-carotene observed in landraces Cas51 and Cas64, respectively. Overall, total carotenoid content in cassava storage root of color class representatives were associated with spatial patterns of secondary growth, color, and abundance of transcripts linked to plastid division. Finally, a partial carotenoid biosynthesis pathway is proposed.