7 resultados para LACTATING COWS
Resumo:
ABSTRACT: Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH 4) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF 6), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH 4 and SF 6 levels were measured with gas chromatography. Differences in CH4 emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3g day?1) than the Crossbred (264.2 g day?1). Lactating cows produced more methane (353.8 g day?1) than dry cows (268.8 g day?1) and heifers (222.6 g day?1). Holstein, with greater milk production potential, produced less CH4 (p < 0.05) per unit of dry matter intake (19.1 g kg?1) than the Crossbred (22.0 g kg?1). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day?1, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day?1). Methane emission varied as function of animal category and management intensity of production system.
Resumo:
The goal of this work was to evaluate grazing behavior of lactating Murrah buffalo cows supplemented with cupuassu byproduct containing 16.8, 51.4, 8.3, 83.5 and 3.4% of ether extract (EE), neutral detergent fiber (NDF), crude protein (CP), total digestible nutrients (TDN) and nonfibrous carbohydrate (NFC), respectively. Experimental rations were balanced for reaching levels of 22.0 % of crude protein (CP) and 80.1 % of total digestible nutrient (TDN).
Resumo:
Seventy-one mature Brangus cows, 38 nonlactating (NL) and 33 in late stage of lactation (L) were fed for 192 days (Phase I) a low energy diet (L). During Phase II (65 days) 19 NL and 17 L cows were fed a high energy diet (H). The other nonlactating (19) and lactating (16) cows remained on the low energy diet. Energy restriction during Phase I did not affect (P> 0.05) cyclic ovarian activity although losses in body weight and condition were substantial. Rapid changes in body weight, condition, and percent empty body lipe (EBLP) during Phase II did not substantially influencefertility, although a five-fold difference in EBLP was observed (NL0H vs. L-L). Treatment groups did not differ (P> 0.05) in conception rate, days from the beginning of the breeding season to breeding and to conception, conception at first service, and number of services per conception. Values observed for these parameters for NL-H, L-H, NL-L, and L-L groups were respectively: 68,4%, `3,.2, 23.3, 36.8% and 1.68; 82,4% 12.7, 19.5, 58.8% and 1.29; 68.4%, 10.2, 17.4, 47.4%, and 1.41; 68.8%, 12.4, 19.5, 43.7%, and 1.50.
Resumo:
The aim of this study was to evaluate milk composition of Murrah buffalo cows supplemented with rations containing cupuassu byproduct in substitution of ground corn. Isoprotein and isoenergy rations were balanced with 22.0% of crude protein (CP) and 80.1% of total digestible nutrient (TDN).
Resumo:
The aim of this study was to evaluate milk yield and calf performances of Murrah buffalo cows supplemented with rations containing cupuassu byproduct in substitution of ground corn.
Resumo:
2016
Resumo:
2016