10 resultados para Krigagem indicativa


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatio-temporal modelling is an area of increasing importance in which models and methods have often been developed to deal with specific applications. In this study, a spatio-temporal model was used to estimate daily rainfall data. Rainfall records from several weather stations, obtained from the Agritempo system for two climatic homogeneous zones, were used. Rainfall values obtained for two fixed dates (January 1 and May 1, 2012) using the spatio-temporal model were compared with the geostatisticals techniques of ordinary kriging and ordinary cokriging with altitude as auxiliary variable. The spatio-temporal model was more than 17% better at producing estimates of daily precipitation compared to kriging and cokriging in the first zone and more than 18% in the second zone. The spatio-temporal model proved to be a versatile technique, adapting to different seasons and dates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O levantamento e a análise da espacialização dos atributos do solo através de ferramentas de geoestatística são fundamentais para que cada hectare de terra seja cultivado segundo as suas reais aptidões. As imagens de radar de abertura sintética (SAR) têm um grande potencial para a estimação de umidade do solo e, desta forma, estes sensores podem auxiliar no mapeamento de propriedades físicas e físico-hídricas dos solos. O objetivo geral deste estudo foi avaliar o potencial de utilização de imagens de radar (micro-ondas) ALOS/PALSAR na identificação de solos em uma área da Formação Botucatu, dominada por solos de textura arenosa e média no município de Mineiros - GO. A área tem aproximadamente 946 ha, com o relevo da região variando de plano a suave ondulado e geologia da área é composta basicamente, por Arenitos da Formação Botucatu. No presente estudo foram amostrados 84 pontos para calibração e 25 pontos para validação, coletados nas profundidades de 0-20 cm e 60-80 cm. As amostras de solo analisadas para a determinação de areia, silte, argila, capacidade de campo (CC), ponto de murcha permanente (PMP) e água total disponível (AD). Para o desenvolvimento do trabalho foram adquiridas imagens de cinco datas e diferentes polarizações, totalizando 14 imagens, que foram processadas para a correção geométrica e correção radiométrica, utilizando o MDE. Também foram gerados covariáveis dos atributos do terreno: elevação (ELEV), declividade (DECLIV), posição relativa da declividade (PR-DECL), distância vertical do canal de drenagem (DVCD), fator-ls (FATOR-LS) e distância euclidiana (D-EUCL). A predição dos atributos do solo foi realizada utilizando os métodos Random Forest (RF) e Random Forest Krigagem (RFK), tendo como covariáveis preditoras as imagens de radar e os atributos do terreno. O processamento das imagens do radar ALOS/PALSAR possibilitou as correções geométrica e radiométrica, transformando os dados em unidades de coeficiente de retroespalhamento (?º) corrigidos pelo modelo digital de elevação (MDE). As imagens adquiridas representaram de forma ampla as variações de ?º ocorridos em diferentes datas. Os solos da área de estudo são predominantemente arenosos, com a maioria dos pontos amostrados classificados como NEOSSOLOS QUARTZARÊNICOS, seguidos dos LATOSSOLOS. Os modelos RF empregados para a predição dos atributos físicos e físico-hídricos dos solos proporcionaram a análise da contribuição das covariáveis preditoras. Os atributos do terreno que exerceram maior influência na predição dos atributos estudados estão relacionados à elevação. As imagens de 03/05/2009 (HH1, VV1, HV1 e VH1) e 26/09/2010 (HH3 e HV3), obtidas em períodos mais secos, tiveram melhores correlações com os atributos do solo. As análises dos semivariogramas dos resíduos da predição dos modelos RF demonstraram maior dependência espacial na camada de 60 a 80 cm. A abordagem da Krigagem somada ao modelo RF contribuíram para a melhoria da predição dos atributos areia, argila, CC e PMP. O uso de imagens de radar ALOS/PALSAR e atributos do terreno como covariáveis em modelos RFK mostrou potencial para estimar os atributos físicos (areia e argila) e físico-hídricos (CC e PMP), que podem auxiliar no mapeamento de solos associados aos materiais de origem da Formação Botucatu.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O conhecimento dos atributos químicos dos solos é um fator de grande relevância, visando a utilização racional de corretivos e fertilizante. Assim, neste trabalho estão sendo caracterizados ambientes da região Norte, Noroeste e Serrana do Estado do Rio de Janeiro, para fins de estimativas de carbono orgânico (Corg), capacidade de troca catiônica (CTC), pH em água, alumínio trocável (Al+3), nitrogênio, saturação por bases (V%) e fósforo. Tendo como objetivo específico à análise exploratória dos dados de fertilidade do solo das três regiões mais produtivas do Estado do Rio de Janeiro. Neste projeto foram usados os dados de solos sistematizados pela Embrapa Solos (Santos et al., 2005). Os solos analisados apresentam baixo pH em água e altos teores em Al+3, bem como baixas concentrações de P, N e C orgânico. Os valores de CTC e V (%) foram considerados bons para a fertilidade do solo. A análise exploratória dos dados identificou outliers e valores extremos, pela análise do sumário estatístico e dos gráficos box-plot das variáveis. A retirada destes últimos melhorou muito a consistência do conjunto remanescente, o que permite antever uma melhor qualidade dos resultados de interpolações por krigagem a serem realizadas e o próprio mapeamento digital da fertilidade, de acordo com McBratney et al. (2003). A análise exploratória mostrou-se útil para as próximas fases de mapeamento digital de solo-paisagem e a recomendação de adubação a ser proposta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nosso objetivo neste estudo foi avaliar espacialmente, usando geoestatística, a variação do Índice de Vegetação da Diferença Normalizada (NVDI) em dois tipos de sistemas de pastejo: rotacionado e contínuo. A obtenção do NDVI ocorreu por meio de imagens do satélite Landsat 8 de 2013 a 2015, tratadas usando o software ArcGIS 10.3. Os valores de NDVI foram atribuídos a cada pixel (30 x 30 m) da imagem. As datas das imagens foram agrupadas em duas estações, seca (de abril a setembro) e chuvosa (de outubro a março), e os valores de NDVI foram analisados usando estatística descritiva e geoestatística, incluindo análise dos semivariogramas e interpolação por krigagem ordinária em uma grade de 1 x 1 m. Os parâmetros de dependência espacial obtidos pelo ajuste do semivariograma foram utilizados para a interpolação por krigagem ordinária, e os mapas foram elaborados. Houve dependência espacial para o NDVI nos dois sistemas de produção de pecuária, com melhor representação da variabilidade na estação seca de 2013, pois o padrão de variabilidade espacial do semivariograma escalonado indica maior homogeneidade dos dados da área de estudo nessa época em relação às demais. Os mapas resultantes da krigagem permitiram identificar, com maior precisão, a interferência da condição de estresse hídrico no desenvolvimento da pastagem, mais vigorosa no sistema rotacionado. A utilização de NDVI obtido por imagens de satélite Landsat 8 demonstrou potencial para o acompanhamento do vigor da vegetação em áreas de pastagem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comumente dados de precipitação pluvial apresentam variação e a obtenção da estimativa de sua distribuição espacial é primordial no planejamento agrícola e ambiental. O objetivo neste trabalho foi comparar o método de estimação dos mínimos quadrados ponderados para ajuste de modelos ao semivariograma com o método de tentativa e erro, através da técnica de auto-validação "jack-knifing", para dados de precipitação pluvial média anual do Estado de São Paulo. Observações de precipitação correspondentes ao período de 1957 a 1997 foram usadas para trezentos e setenta e nove (379) estações pluviométricas abrangendo todo o Estado de São Paulo, representando uma área de aproximadamente 248.808,8 km². A periodicidade exibida pelos semivariogramas foi ajustada pelo modelo "hole effect", em que os parâmetros foram estimados com maior precisão pelo método de mínimos quadrados ponderados quando comparado com o método de tentativa e erro. O método de auto-validação "jack-knifing" mostrou-se adequado para a definição de métodos e modelos a serem usados para semivariâncias, cujo procedimento permitiu definir dezesseis vizinhos como o número ideal para a estimativa por krigagem de valores de precipitação pluvial para locais não amostrados no Estado de São Paulo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste trabalho foi predizer a fertilidade do solo no polo agrícola do Estado do Rio de Janeiro, por meio da modelagem solo x paisagem. A área de estudo compreendeu as regiões mais produtivas do Estado do Rio de Janeiro: Norte, Noroeste e Serrana. Características químicas do solo ? pH em H2O e capacidade de troca catiônica (CTC) ? e ambientais ? elevação, plano de curvatura, perfil de curvatura, índice de umidade, aspecto e declividade do terreno, além de tipos de solos, índice de vegetação normalizada (NDVI), imagens Landsat 7 e litologia ? foram utilizadas como variáveis preditoras. A análise exploratória dos dados identificou valores extremos, os quais foram expurgados, na preparação para a análise por regressão linear múltipla (RLM). Aos resultados da RLM, foram adicionados os resultados de krigagem dos resíduos da regressão, com uma técnica de mapeamento digital de solos (MDS) denominada regressão-krigagem. Na região Serrana, as variáveis ambientais explicaram as variáveis químicas. A variável NDVI foi importante nas três regiões, o que evidencia a importância da cobertura vegetal para a predição da fertilidade do solo. Em geral, os solos analisados apresentaram baixo pH. Os valores de CTC, nas regiões estudadas, estão dentro do intervalo considerado bom para a fertilidade do solo.