2 resultados para Jamari National Forest
Resumo:
The objective of this paper was to determine changes in the spatial distribution of tree species in a logged compared to an unlogged forest of the Tapajos National Forest in the municipality of Belterra, State of Para, Brazil, over an eight-year period. The distribution pattern was determined for trees> 5 cm dbh and, also, for trees > 30 cm dbh. The relationship (a quadrate method) discussed by McGinnis was selected to be used in this study. Forty-seven percent of species with trees > 5 cm dbh showed clumped distribution in the studied forests. Geissospermwn sericeunz Benth & Hook., Minquartia guianensis Aubl., Poureria bilocularis (H. Winkler) Bachni, Protium guacayantan Cuatrec, Sclerolobium chrysophyllunz Poepp. et Endl. and the Sapotaceae family (9 species) occurred in clumps of small trees (5 cm 5 dbh < 30 cm) and big trees (dbh > 30 cm) in both the logged and undisturbed forest. Trees in all sizes of these species certainly have aggregation characteristics in different light condition's during the whole growth-cycle. Only Sclerolobium cizzysophylltan out of fourteen species that occurred aggregated in all forest conditions was light demanding. The shade-tolerant Lecythis lurida (Miers) Mori and Manilkara huberi (Ducke) Stand!. showed also aggregated distribution for small and big trees in the unlogged forest. An aggregated distribution is not always directly correlated to abundance, considering that most of the clumped species had less than seven trees per hectare.
Resumo:
Background: Managed forests are a major component of tropical landscapes. Production forests as designated by national forest services cover up to 400 million ha, i.e. half of the forested area in the humid tropics. Forest management thus plays a major role in the global carbon budget, but with a lack of unified method to estimate carbon fluxes from tropical managed forests. In this study we propose a new time- and spatially-explicit methodology to estimate the above-ground carbon budget of selective logging at regional scale. Results: The yearly balance of a logging unit, i.e. the elementary management unit of a forest estate, is modelled by aggregating three sub-models encompassing (i) emissions from extracted wood, (ii) emissions from logging damage and deforested areas and (iii) carbon storage from post-logging recovery. Models are parametrised and uncertainties are propagated through a MCMC algorithm. As a case study, we used 38 years of National Forest Inventories in French Guiana, northeastern Amazonia, to estimate the above-ground carbon balance (i.e. the net carbon exchange with the atmosphere) of selectively logged forests. Over this period, the net carbon balance of selective logging in the French Guianan Permanent Forest Estate is estimated to be comprised between 0.12 and 1.33 Tg C, with a median value of 0.64 Tg C. Uncertainties over the model could be diminished by improving the accuracy of both logging damage and large woody necromass decay submodels. Conclusions: We propose an innovating carbon accounting framework relying upon basic logging statistics. This flexible tool allows carbon budget of tropical managed forests to be estimated in a wide range of tropical regions