5 resultados para INSECTICIDE RESIDUE
Resumo:
This work describes an electrochemical and quantum chemical investigation of the fipronil insecticide. Cyclic voltammetry (CV) and square wave voltammetry (SWV) experiments were performed over a graphite-polyurethane (GPU) composite electrode. The fipronil molecule presents an one?electron irreversible oxidation reaction. Profiting the SWV signal a square wave stripping voltammetry (SWSV) procedure to determine the fipronil molecule in a 0.10 mol L-1 Britton-Robinson buffer solution, pH 8.0 was developed with accumulation potential and time of 0.50 V and 120 s, respectively. The limits of detection and quantification were 0.80 and 2.67 ?g L-1, respectively. Recovery tests were performed in three natural waters samples with values ranging from 99.67 to 101.37%. Quantum chemical studies showed that the nitrogen atom of the pyrazole group is the most probable oxidation site of the fipronil molecule.
Resumo:
A field efficacy evaluation revealed significant differences in efficacy among a few of the numerous insecticides or combinations of insecticides applied for Heliothis spp. control. An increasing proportion of made up this field population during the test period. Partial budgeting revealed that the net returns from applying any treatment were directly proportional to the resulting yield obtained from that treatment.
Resumo:
The bioaccumulation and elimination of endosulfan in zebra fish (Brachydanio rerio) were investigated in a semi-static bioassay. The pesticide mean concentration in water was 03ug litre(-1) and the level of endosulfan residues (x(alfa)+B(beta)-isomers+endosulfan sulfate) in the exposed fish at day 21 was 0.81 (+-0.12)ug g(-1) body weight. The estimated value of the bioconcentration factor (BCF) was 2650 (+-441), the total endosulfan residues being eliminated with a biological half-life of four days. Histopathological studies showed predominantly lipid accumulation in the liver and necrotic focus in the gills of exposed fish.
Resumo:
This study aimed to evaluate the development and reproduction of the black armyworm, Spodoptera cosmioides when larvae fed on leaves of Bt-corn hybrids, expressing a single Cry1F and also Cry1F, Cry1A.105 and Cry2Ab2 in pyramided corn and their non-Bt-isoline (hybrid 2B688), as well as on leaves of two soybean isolines expressing the Cry1Ac protein and its non-Bt isoline (A5547-227). We also assessed the effect of these Bt and non-Bt plants on the leaf consumption rate of S. cosmioides larvae. This pest was unable to develop when fed on any of the corn isolines (Bt and non-Bt). When both 1st and 3rd instar larvae were fed on corn leaf, mortality was 100% in both Bt and non-Bt corn. In contrast, when corn leaves were offered to 5th instar larvae, there were survivors. Defoliation and leaf consumption was higher with non-Bt corn than with both of the Bt corn isolines. There was no negative effect of Bt soybean leaves on the development and reproduction of S. cosmioides with respect to all evaluated parameters. Our study indicates that both Bt and non-Bt corn adversely affect the development of S. cosmioides while Bt soybean did not affect its biology, suggesting that this lepidopteran has major potential to become an important pest in Bt soybean crops.
Resumo:
When the harvesting of sugarcane involves a mechanized process, plant residues remain on the soil surface, which makes proximal and remote sensing difficult to monitor. This study aimed to evaluate, under laboratory conditions, differences in the soil spectral behavior of surface layers Quartzipsamment and Hapludox soil classes due to increasing levels of sugarcane?s dry (DL) and green (GL) leaf cover on the soil. Soil cover was quantified by supervised classification of the digital images (photography) taken of the treatments. The spectral reflectance of the samples was obtained using the FieldSpec Pro (350 to 2500 nm). TM-Landsat bands were simulated and the Normalized Difference Vegetation Index (NDVI) and soil line were also determined. Soil cover ranged from 0 to 89 % for DL and 0 to 80 % for GL. Dry leaf covering affected the features of the following soil constituents: iron oxides (480, 530 and 900 nm) and kaolinite (2200 nm). Water absorption (1400 and 1900 nm) and chlorophyll (670 nm) were determinant in differentiating between bare soil and GL covering. Bands 3 and 4 and NDVI showed pronounced variations as regards differences in soil cover percentage for both DL and GL. The soil line allowed for discrimination of the bare soil from the covered soil (DL and GL). High resolution sensors from about 50 % of the DL or GL covering are expected to reveal differences in soil spectral behavior. Above this coverage percentage, soil assessment by remote sensing is impaired.