4 resultados para Greenhouse gardening.
Resumo:
2007
Resumo:
2011
Resumo:
The root knot nematode (RKN), Meloidogyne incognita, is widespread worldwide and a major pathogen of several cultivated crops. The use of resistant genotypes is the most effective and environmentally sound way to manage RKN. In this study, we screened 16 selected sweet potato cultivars including Amanda, Bárbara, Beatriz, Beauregard, Brazlândia Branca, Brazlândia Rosada, Brazlândia Roxa, BRS Amélia, BRS Cuia, BRS Rubissol, Carolina Vitória, Duda, Júlia, Marcela, PA-26/2009, and Princesa obtained from Embrapa and Universidade Federal do Tocantins? germplasm bank. Studies were conducted under greenhouse and field conditions and the agronomic performance of the cultivars was evaluated in a nematode and soilborne insect-infested field. All 16 sweet potato cultivars tested were rated as resistant to this nematode both under greenhouse and field conditions with reproduction factors < 1. In the field infested with M. incognita, sweet potato cultivars Duda, BRS Amélia, Beauregard, Brazlândia Rosada, and Brazlândia Roxa stood out as superior cultivars, with average yield ranging from 26 to 47 tons per ha. Overall, most cultivars exhibited a fusiform to near fusiform root shape, a good characteristic for the market, and were moderately affected by insects (attack incidence 1 to 30%). As global demand for energy continues to rise, selecting new cultivars of sweet potatoes with increased resistance to nematode diseases and with high yield will be important for food security and biofuel production.
Resumo:
Research networks provide a framework for review, synthesis and systematic testing of theories by multiple scientists across international borders critical for addressing global-scale issues. In 2012, a GHG research network referred to as MAGGnet (Managing Agricultural Greenhouse Gases Network) was established within the Croplands Research Group of the Global Research Alliance on Agricultural Greenhouse Gases (GRA). With involvement from 46 alliance member countries, MAGGnet seeks to provide a platform for the inventory and analysis of agricultural GHG mitigation research throughout the world. To date, metadata from 315 experimental studies in 20 countries have been compiled using a standardized spreadsheet. Most studies were completed (74%) and conducted within a 1-3-year duration (68%). Soil carbon and nitrous oxide emissions were measured in over 80% of the studies. Among plant variables, grain yield was assessed across studies most frequently (56%), followed by stover (35%) and root (9%) biomass. MAGGnet has contributed to modeling efforts and has spurred other research groups in the GRA to collect experimental site metadata using an adapted spreadsheet. With continued growth and investment, MAGGnet will leverage limited-resource investments by any one country to produce an inclusive, globally shared meta-database focused on the science of GHG mitigation.